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Overview:
• We are working towards an assessment of the possible 

growth and saturation of two-stream instabilities for 
heavy ion beams propagating in the reactor chamber.

• In particular, the neutralized-ballistic transport mode is 
being considered.

• Can we build on the previous of work on converging 
beams (e.g., P. Stroud [1]), or is a new assessment 
needed?

• Assess impact of instability saturation on net current 
generation – a possible connection with past simulation 
work showing net current generation near the beam 
focus [2]. 

[1] P. Stroud, “Streaming modes in final beam transport for heavy ion beam fusion,” 
Laser and Particle Beams 4, 261 (1986).
[2] D. R. Welch, et al., Phys. Plasmas 9, 2344 (2002).



Previous analysis [1] of streaming 
instabilities for a converging heavy ion beam 
assumed a different baseline parameter set 

than present “robust point design [3].”
• Ref. [1] assumed 10 GeV heavy ions propagating over 5 

– 10 meters in background gas densities of 1011 – 1016

cm-3.
• Results assumed two-stream growth rates based on 1-D 

dispersion analysis.
• Growth rate compared to rate of beam and plasma 

density evolution gives spatially dependent kmax (wave-
number of fastest growing mode).  If kmax is changing fast 
enough, then instability doesn’t have time to fully 
develop.

[3] S. Yu, et al., “An Updated Point Design for Heavy Ion Fusion,” submitted to 
Fusion Sci. and Technol. (2003).



For Neutralized Ballistic Transport, the ion beam 
passes through a wide range of background 

plasma and gas parameters.
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1-D Studies:

• Benchmark LSP against standard 
dispersion relations for 2 and 3-species

• Include usage of “HIF” parameters in 
comparisons. 

• 1-D modeling encompasses the “body” 
mode of the two-stream instability.



1-D Studies: 
Two-stream growth rates

Two-species dispersion relation (Buneman):
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Three-species dispersion relation:
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Simulation Configuration:
• 1-D, electrostatic ADI solver
• Periodic boundaries with λ = 2π/kmax, with 

kmax determined from solutions to 
dispersion relations.

• Cold species in all cases
• Growth stimulated by small amplitude 

velocity perturbation applied to electron 
species (∆v/vb ~ 10-4)

• Nominal parameters: vb=0.2c, np=109 cm-3



Two-species, 1-D results: LSP simulations 
accurately track the basic instability 

mechanism
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LSP results in good agreement with 3-
species dispersion relation analysis.
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LSP simulation scans in k-space also correctly 
follow growth rates and real frequencies. 
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1-D, 3-species with “dense” plasma (np/nb=9):
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1-D simulation (periodic) with L=200λmax, 
initial perturbation region is 10λmax : 
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Electrons (0.1c)

Plasma
Ions
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1-D density scan illustrates 
density scaling (growth ∝ ne

1/2).
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2-D (r,z) two-stream growth for radially
bounded ion-beam-plasma systems:

• Dispersion relation developed for 2-D 
“hard-edge” beam system.

• Numerical solution in time for system of 
equations for “soft” beam profiles.

• Direct comparisons with 2-D LSP 
simulations (electrostatic).

• 2-D LSP EM simulations giving finite net 
current fractions – in progress. 



2-D dispersion analysis for “hard-
edge” ion beam in plasma:
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2-D dispersion analysis for “hard-
edge” ion beam in plasma (cont.):
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2-D dispersion analysis for “hard-
edge” ion beam in plasma (cont.):

Matching ez and jump condition on  ε∂ez/∂r at rb gives:
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2-D Problem Geometry
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Hard-edge-profile ion beam simulation and 
theory results: influence of radial boundary 

minimal at modest values of Rw/rb.
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Scan in electron velocity for 2-D “hard-edge” beam 
profile shows a broader k-range around peak growth 

values compared to 1-D dispersion analysis:
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Simulations are compared directly the 2-D model 
using a radial profile (charge and current neutral):
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For the range of beam/plasma densities of 
interest, body (1-D) and surface (2-D) 

modes can have comparable growth rates: 
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Simulations and theory in good agreement 
over a wide range of beam-edge profiles
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Status:

• Initial two-stream studies have provided 
basic growth-rate scaling and important 
benchmarks for PIC.

• Converging ion beam studies are 
underway in “idealized” limit (collisionless, 
uniform background plasmas, etc.)

• EM studies of net current evolution are 
also planned as part of this analysis.
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