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Outline

• Summarize engineering plan of action

• Modular maintenance approach

• Modular design with SiCf/SiC and Pb-17Li

• Preliminary discussion of other maintenance 
approaches

• Future work
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Proposed Plan for Engineering Activities
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Some initial thoughts for discussion

Preliminary port size evaluation

Current focus

Engineering Activities: Year 1

• Perform Scoping Assessment of Different Maintenance 
Schemes and Design Configurations

- Three Possible Maintenance Schemes:

1. Sector replacement including disassembly of modular coil system (e.g. SPPS,
ASRA-6C)

2. Replacement of blanket modules through maintenance ports arranged 
between all modular coils (e.g. HSR)

3. Replacement of blanket modules through small number of designated 
maintenance ports (using articulated boom)

- Each maintenance scheme imposes specific requirements on machine 
and coil geometry
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This presentation

Presented at
last meeting

Engineering Activities: Year 1

- Scoping analysis of possible blanket/shield/divertor configurations compatible
with maintenance scheme and machine geometry, including the following 
three main classes:

1. Self-cooled liquid metal blanket(LiPb) (might need He-cooled divertor 
depending on heat flux)
a) with SiCf/SiC
b) with insulated ferritic steel and He-cooled structure 

2. He-cooled liquid breeder blanket (or solid breeder) with ferritic steel and
He-cooled divertor

3. Flibe-cooled ferritic steel blanket
(might need He-cooled divertor depending on heat flux)

- Evolve coil configuration(s)
- Material and thicknesses

- Radius of curvature, shape

- Space and shielding requirements

(PPPL, MIT)
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Proposed Analysis Procedure

• Start with NCSX-
based coil and
plasma shape with
3-field period
(From Long-Poe
Ku’s memo)

• Perform scoping
maintenance
scheme &
configuration
analysis

• Need divertor
guidelines (heat
load, geometry)

Geometry
Major Radius, R 8.3 m
Minor Radius, <a> 1.85 m
Plasma Aspect Ratio 4.5
Plasma Volume 550 m3

Plasma Boundary Surface Area 780 m2

Minimum Distance between Plasma Boundary
and Center of Coil Winding, ∆min

1.2 m

Plasma Parameters
Magnetic Field on Axis, B 5.3 T
Volume Averaged Beta 4.1%
Plasma Current, Ip 3.55 MA

Power
Fusion Power, Pf 2 GW
Ave. Neutron Wall Loading, Γn 2 MW/m2

Max. Neutron Wall Load (assumed) ~3 MW/m2
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• ITER modular maintenance
approach
- Rail system
- Transporter from port to 

~module plane on rail
- Articulated boom to replace 

module

• CS configuration makes a rail
system very challenging
- “Roller coaster” system
- Perhaps single rail but only to 

provide support for boom when 
extended, not for transporter to 
carry module to and from port

- Preferable to design for module 
replacement using articulated 
boom only if possible

Plasma Access for Articulated Boom Between Ports for Modular
Maintenance Approach With Limited Number of Ports



May 6-7, 2003/ARR
8

Modular Design Approach Using Articulated Boom

• From EDITH-system*, boom built
with:

 - a total length of ~ 10m
- a reach of +/- 90° in NET
- pay load of 1 ton

 - maximum height of 2 m

• Current ARIES-CS modular design
based on comparable parameters for
3 ports (horizontal or vertical)
- half field period length ~ 9 m
- minor radius =1.85 m (local plasma 

height varies over about 1.5-3.5 m)
- Weight of empty module < 1 ton

*Experimental -In-Torus Maintenance System for
Fusion Reactors, FZKA-5830, Nov. 1966.

• Could use additional ports if required
- Depending on access for module 

removal in toroidal direction over 
region serviced by port
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Plasma Access for Articulated Boom Between Ports for Modular
Maintenance Approach With Limited Number of Ports

• Final number of ports,
largest module size and
degree of freedom of
articulated boom (probably
with at least 3-4 “elbows”)
would depend on toroidal
access through plasma space
between port and furthest
serviced region

- If required, optimization 
between penalty of increasing
reactor size and maintenance
and module design 
considerations
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Blanket Modular Design Approach Using SiCf/SiC as Structural
Material and Pb-17Li as Breeder/Coolant

Based on ARIES-AT concept
• High pay-off, higher development 

risk concept
- SiCf/SiC: high temperature operation

and low activation
- Key material issues: fabrication, 

thermal conductivity and maximum
temperature limit

• Replaceable first blanket region
• Lifetime shield (and second blanket

region in outboard)

• Mechanical module attachment 
with bolts
- Shear keys to take shear loads 

(except for top modules)

• Example replaceable blanket module
size  ~2 m x 2 m x 0.25m (~ 500-600
kg when empty) consisting of a 
number of submodules (here 10)
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Blanket Module Configuration Consists of a Number of
Submodules

Submodule configuration
• Curved first wall for better  
Pb-17Li pressure (<~2 MPa) 
accommodation

• 4 mm thick SiCf/SiC first wall 
with 1 mm CVD SiC coating

• Hoop stress ~ 60 MPa

• Side wall of adjacent submodules 
pressure balanced, except for 
each end submodule where 
thicker side walls are required 
to accommodate the pressure

• Mechanical attachment between 
two modules also shown
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Coolant Flow and Connection for ARIES-CS Blanket Modular
Design Using SiCf/SiC and Pb-17Li

• Two-pass flow through submodule
- First pass through annular channel to

cool the box 
- Slow second pass through large inner

channel 

• Helps to decouple maximum SiCf/SiC
temperature from maximum Pb-17Li
temperature
- Maximize Pb-17Li outlet temperature

(and cycle efficiency)
- Maintain SiCf/SiC temperature within

limits

• Use of freezing joint behind shield
(and possibly vacuum vessel) for
annular coolant pipe connection
- Inlet in annular channel, high 

temp. outlet in inner channel
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Pb-17Li Coolant Coupled with Brayton Power Cycle
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• Best near-term possibility of power
conversion with high efficiency
– Maximize potential gain from high-

temperature operation with SiCf/SiC

• Compatible with liquid metal blanket
through use of HX

Cycle Efficiency Increases with Maximum
Cycle He Temperature
- Compression ratio set to maximize cycle

efficiency in each case

- For TSiC/SiC < 1000°C, Max. THe,cycle ~ 900°C
and cycle~ 0.55

- Compression ratio is additional control knob
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Brayton cycle using 3-stage comp. with 2 inter-coolers
Total comp. ratio set to maximize  in each case=1.8-2.5

Heat Exchanger:
   Effectiveness = 0.9
   (mCp)He/(mCp)LiPb = 1

Min. He temp. in cycle (heat sink) = 35 °C
Turbine/compressor  = 0.93/0.88
Recuperator effectiveness = 0.96
Cycle He fractional DP  = 0.03
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HX Inlet He Temperature (and, hence, Power Core Pb-17Li Inlet
Temperature) Can Be Set by Adjusting Cycle Compression Ratio
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Brayton cycle using 3-stage comp. with 2 inter-coolers

Heat Exchanger:
Effectiveness = 0.9
(mCp)He/(mCp)LiPb = 1

Min. He temp. in cycle (heat sink) = 35 °C
Turbine/compressor  = 0.93/0.88
Recuperator effectiveness = 0.96
Cycle He fractional DP  = 0.03
Cycle He max. temp. = 1050°C

Max. TFW,SiC/SiC

LiPb Tinlet

Some flexibility in setting cycle compression ratio, and inlet HX He
temp. (dictating inlet blanket Pb-17Li inlet and max. SiCf/SiC
temp.) with minimal decrease in cycle efficiency temperature
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Temperature Distribution in Example ARIES-CS Blanket
Modular Design Using SiCf/SiC and Pb-17Li

•  Pb-17Li Inlet Temperature ~ 699°C

• Pb-17Li Outlet Temperature ~ 1100°C

• Maximum SiC/SiC Temperature ~ 970 °C

• Maximum SiC/LiPb Temperature ~ 900 °C
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Typical Parameters for Example ARIES-CS Blanket Design with
SiCf/SiC and Pb-17Li (Not fully optimized yet)

Cycle & Coolant Parameters
Cycle He Maximum T emperature 1050°C
Total Compression Ratio 3
Efficiency 0.584
Cycle THe at Recuperator Exit 604°C
LiPb Inlet Temperature to Divertor 654°C
LiPb Inlet Temperature to Blanket 699°C
LiPb Outlet Temperature 1100°C
LiPb Inlet Pressure 2 MPa

Outboard Blanket Module
Module Poloidal Dimension 2 m
Module Toroidal Dimension 2 m
Module Radial Dimension 0.25 m
Number of Submodules per Module 10
Submodule Toroidal Dimension 0.2 m
Outboard FW Annular Channel Thickness 4 mm
LiPb Average Velocity in Annular Channel 0.7 m/s
LiPb Velocity in FW Annular Channel 1.6 m/s
LiPb Average Velocity in Large Inner Channel 0.05 m/s
SiCf/SiC FW Thickness 4 mm
CVD SiCf/SiC Armor Thickness 1 mm
Maximum CVD SiC Temperature ~970°C
Max. SiC/LiPb Temperature at Submodule Outlet ~900°C
FW MHD Pressure Drop 0.063 MPa
SiCf/SiC Hoop Stress 60 MPa
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Modular Maintenance Approach with Ports
Between Each Coil

• Minimum Port Sizes
- 1.6 m x 2.3 m and 1.2 m x 5.0 m
- Quite limiting constraint on size

of module
- Desirable to accommodate

~2 m x 2 m x 0.25 m module

• Unless reactor size (and port
size) is increased, this
maintenance scheme seems
marginal and a modular
maintenance scheme through
fewer larger ports is preferable
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Sector-Like Maintenance Approach
• Based on current example machine

configuration, the following sector
removal seems possible
- 3 sectors consisting of 4 coils each
- 3 sectors consisting of 2 coils each
- Must remove two larger sectors 

first and then smaller sector
- Complex maintenance process
- Size and number of maintenance

sectors would change based on 
several parameters including:
- size of machine 
- toroidal protrusion of coil on 

adjacent coil
- size coil + casing

- Guidance needed on these, e.g.
- confirmation of smaller size coil +

casing (20 cm?)
- physics wise how much do we lose

with ~10’s cm less toroidal coil 
protrusion?
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1. Is it feasible to heat up the coil system prior to disassembly or is it 
necessary to design the coil system for “cold” maintenance
- If heating up the system is feasible (for blanket replacement), how much 

additional time would be required for such an operation?
- Impact of this additional time will depend on frequency of blanket replacement
- e.g. a cool-down period of ~1 month years would probably be acceptable for 

blanket replacement (~3MW/m2, 0.85 load factor-->200 dpa steel) every ~8 
years of operation (~1% impact on availability)

Some Initial Thoughts for Sector-Like Maintenance Approach
Based on Disasembling the Modular Coil System (S. Malang)

2. Which kind of connections between the cold coil system and a support at
ambient temperature can be designed to carry the total weight of coils + 
supporting structure?
- The issue here is the heat flow to the cold system through the supporting legs.
- More serious problem for LTSC’s
- Is a requirement for the cryogenic plant of ~1 MW acceptable (corresponding

to ~1000W of heat removal)?
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Some Initial Thoughts for Sector-Like Maintenance Approach
Based on Disasembling the Modular Coil System (cont.)

• Already challenging to design such a system without the requirement to allow for 
disassembling the coils for blanket replacement.

• This issue needs more attention than previously paid by a number of Stellarator 
reactor studies.

3. How can the coil system be supported
to react the radial forces pulling it 
toward the centre of the system?
• These are by far the largest forces 

acting on the coils.
- Up to 350MN per coil for the SPPS-

Stellarator, reacted by a ring with a 5-m 
inner radius of and a 3-m wall thickness

• Such large forces cannot be transferred
from a cold to a warm component 
(through an insulation).

 • Therefore, the coil winding, housing, 
and the supporting ring in the centre 
have to be operated at a uniform 
cryogenic temperature.
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4. How large are the forces between neighboring coils, and how can they be reacted?
• For planar coils with equal current flow these forces are balanced, but if one coil fails, large 

forces would act on the neighboring coils.
• For a system with non-planar coils, forces between neighboring coils exist but are balanced 

within each field period in the case of a Stellarator .
• All coil windings of a field period could be placed in grooves of a common support tube strong 

enough to balance the lateral forces of the coils.
• If this is feasible, these support tubes would be “stand-alone elements” not requiring force 

transfer between field periods.
• This would be advantageous for blanket maintenance but at the expense of having to move a 

huge unit for blanket replacement (the size would be reduced if it could be done over half a 
field period)

Some Initial Thoughts for Sector-Like Maintenance Approach
Based on Disasembling the Modular Coil System (cont.)

5. How can the weight of the blanket+neutron shield be transferred to the base structure of 
the reactor?
• For the above-mentioned case with a strong supporting tube per field period, the weight of the 

cold elements (winding + supporting tube, ~ 5000 tonnes) must be transferred to the vacuum 
vessel through supporting legs with minimum heat conduction area

• The weight of the “warm” components surrounding the plasma (FW, breeding blanket, reflector,
neutron shield, ~ 10,000 tonnes) ) must be transferred to the fundament of the vacuum vessel via 
“warm” leg, reaching through openings in the “cold” support tubes of the coils.

• There has to be insulation around these legs, and the legs can be used to house the coolant     
access tubes for the blankets.
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1. Coil: HTSC or LTSC

2. Coil: Confirm thickness of windings+casing

3. Coil: Demountable or not

4. Coil/Physics: What is the penalty of shaving off ~10 cm’s radially to 
facilitate access for sector maintenance

5. Coil/Physics: What is the penalty of changing the number of field periods
(e.g. going from 3-field to 2-field or 4-field periods)

6. Divertor: Location, heat loads, particle fluxes?

7. Starting Point Configuration: Need revised consistent set of power 
density, machine size, plasma parameters and magnetic field

Guidance Needed on Several Questions, Including:


