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Overview

• Thin liquid protection:  Experimental study of high-
speed thin liquid films on downward-facing surfaces 
around cylindrical dams [J. Anderson, D. Sadowski]
– Ports for beam entry and target injection
– Effect of surface wettability

• Thick liquid protection:  Experimental studies of 
turbulent liquid sheets [S. Durbin, J. Reperant, D. 
Sadowski]
– Quantify surface smoothness of stationary liquid 

sheets using planar laser-induced fluorescence (PLIF) 
technique

– Impact of initial conditions:  nozzle geometry, flow 
straightener design, flow straightener blockage
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Thin Liquid Protection
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Objectives

2 mm nozzle
17 GPM
10.7 m/s
10o inclination
Re = 20000

2 mm nozzle
17 GPM
10.7 m/s
10o inclination
Re = 20000

• Determine “design windows” for high-speed 
liquid films proposed for thin liquid protection 
of IFE reactor chamber first wall

• In the absence of film dryout, films most likely 
to detach on downward-facing surfaces on top 
endcap
– Chamber curvature probably negligible:  chamber 

radius ~6.5 m, vs. film radius of curvature at 
detachment point O(1 cm)

• How does film flow around cylindrical obstructions, or 
dams (e.g. beam ports)?
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Experimental Apparatus

A Glass plate 
(1.52  × 0.40 m)

B Liquid film
C Flow 

straightener
D Film nozzle

A
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C
D Adjustable 

angle θ
xz

gcos θ
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Cylindrical Obstructions

How does 
high-speed 
film flow 
around 
obstructions 
(e.g. beam 
ports)?

Magnet

Nozzle
Dam

• Cylindrical dam/obstruction at x = 7.6–9 cm from nozzle 
exit
– Held in place by permanent rare-earth magnet above glass plate

• Vary cylindrical dam height H and diameter D
– Height (axial dimension) H ~ δ
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Experimental Parameters
• Nozzle exit thickness (z-dimension) δ = 0.1, 0.15, 0.2 cm
• Average speed at nozzle exit U0 = 1.9–5.1 m/s
• Jet injection angle θ = 0°, 30°
• Cylindrical dam outer diameter D = 1.58, 2.54 cm
• Cylindrical dam height H = 0.051, 0.12, 0.24 cm

– Reynolds number Re = U0 δ/ν = 3800–9800
– Froude number Fr = U0 / [(g cos θ) δ]½ = 15–55
– Weber number We = ρU0

2 δ/σ = 100–700
– Cylindrical dam aspect ratio AR = H/D = 0.02–0.093
– Film nozzle aspect ratio ARf = (5 cm)/δ = 25–50
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Results

Dam Dam

Detachment Type II
• δ = 0.15 cm
• Re = 3800
• H = 0.24 cm
• D = 2.54 cm
• AR = 0.093

Detachment Type I
• δ = 0.15 cm
• Re = 7600
• H = 0.24 cm
• D = 2.54 cm
• AR = 0.093



ARIES-IFE 9/02 9

Detachment Type I:  H > δ

θ = 30°

θ = 0°

• AR = 0.047• δ = 0.1 cm
• Re = 3800
• H = 0.12 cm
• D = 2.54 cm
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Detachment Type II:  H > δ

θ = 30°

θ = 0°

• δ = 0.2 cm
• Re = 3800
• H = 0.24 cm
• D = 1.59 cm
• AR = 0.15
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Flow Over Dam:  H < δ

θ = 0°

θ = 30°• δ = 0.1 cm
• Re = 3800
• H = 0.051 cm < δ
• D = 2.54 cm
• AR = 0.02

Flow Over Dam
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Summary:  Obstructions

• H > δ:  Detaches around cylindrical obstructions at 
outer leading edge (Type I) or inner trailing edge 
(Type II)

• H < δ: Flows over obstruction, blocking hole
• Occurs at lowest speeds (and Re) 
• Cylindrical beam ports incompatible with wet wall 

concept
– “Streamlined” fairings?
– No beam ports on upper endcap ⇒ fewer beams?

For all cases studied, film flow on downward-facing 
surfaces either:
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Surface Wettability
• Compare film average detachment length xd, lateral 

spread W for water on two surfaces with very different 
contact angles/wettability
– Water on glass:  contact angle ≈ 30°
– Water on glass coated with Rain-X®:  contact angle ≈ 85°

Water on glass
(drop diameter ~5 mm; 

volume 0.4 mL)
Water on glass w/Rain-X

(drop dia. ~4 mm;
vol. 0.4 mL)
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Wettability Effects
• At Re = 3800, xd / δ ≈ 100 for Rain-X surface; 180 for glass
• At Re = 14700, xd / δ ≈ 550 for Rain-X surface; 700 for glass
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x / δ

W
/W

o

Glass, Re = 3800
Rain-X, Re = 3800
Glass, Re = 14700
Rain-X, Re = 14700

• δ = 0.2 cm
• θ = 0°

Preliminary data Non-wetting 
surface ⇒ Earlier 
detachment
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Future Work
• Streamlined beam ports

• Examine effect of surface wettability/contact angle
– Non-wetting surfaces (a la Prometheus) worse:  earlier 

detachment, smaller lateral spread
• Measure film thickness with ultrasonic probes
• Measure lateral (y) velocity profile across film using 

laser-Doppler velocimetry (LDV)

Sketch courtesy L. Waganer
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Thick Liquid Protection
• Protect IFE reactor chamber first walls by using molten 

salt or liquid metal “curtain” to absorb neutrons, X-rays, 
ions and target debris from fusion events

• HYLIFE-II conceptual design based on 
turbulent liquid sheets as “building block”
– Oscillating slab jets, or liquid sheets, 

create protective pocket to shield 
chamber sides

– Lattice of stationary liquid sheets 
shield front and back of chamber while 
allowing beam propagation, target 
injection Sketches courtesy P.F. Peterson
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Design Issues
• Effective protection ⇒ minimize clearance 

between liquid sheet free surface and driver beams, 
or minimize surface ripple

– Irradiation of final focus magnets
– Interferes with target injection, beam propagation
– How do various jet (nozzle, flow straightener) designs 

impact the free-surface geometry and its fluctuations?
• Robust protection ⇒ thick liquid protection system 

must withstand occasional disturbances
– How does partial blockage of the flow straightener (due, 

for example, to debris) affect the free-surface geometry 
and hence surface ripple?
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Objectives

• Liquid probability distribution (LPD): probability of 
finding liquid at any given spatial location

• Mean surface ripple σz:  Average standard deviation of 
the z-position of the free surface

• Study turbulent vertical sheets of water issuing 
downwards into atmospheric pressure air at Reynolds 
numbers Re = Uoδ/ν = 53,000–130,000  (prototypical Re
= 200,000)
Uo average speed at nozzle exit; δ nozzle thickness (short 
dimension); ν fluid kinematic viscosity

Quantify impact of nozzle designs and blockage on 
surface ripple in liquid sheets typical of HYLIFE-II
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Experimental Apparatus

A Pump B Bypass line
C Flow meter D Pitot tube
E Flow straightener
F Nozzle G Oscillator
H Sheet I 400 gal tank
J Butterfly valve K 350 gal tank

• Pump-driven recirculating flow loop
• Test section height ~1 m
• Overall height ~5.5 m
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Nozzle Geometries
• Fabricated with 

stereolithography rapid 
prototyping

• Nozzle exit dimensions 
1 cm (δ) × 10 cm

• 2D contractions:  nozzle 
z-dimension contracts 
from 3 cm to 1 cm at 
exit

• Three different nozzles
A Matched circular-arc 

contraction

A
B

C

x y
z

B 5th order polynomial 
contraction

C B with rounded corners
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PLIF Technique

• Water dyed with fluorescein
• Jet illuminated by Ar+ laser light 

sheet at 514 nm
• Free surface imaged obliquely from 

below by CCD camera
• 100 (1008 × 1008 pixel) consecutive 

images acquired at 30 Hz over 3.3 s 
for x ≤ 25 cm

• Image exposure 5τ = 4.3–11.2 ms, 
where τ = δ/Uo

Visualize free surface as interface 
between fluorescing (white) water 
and (black) air

x

y 10 cm

z
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• Threshold individual images
– Grayscale > threshold ⇒ liquid; < threshold ⇒ air

• Average over 100 images ⇒ LPD; assemble composite 
LPD over half the flow by overlapping side, edge sections

• Probability of finding liquid inside 50% contour ≥ 50%
• Distance between contours measure of surface ripple

Liquid Prob. Distribution

Nozzle

LPD 
(part of 
side 
view)

LPD (edge view)
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5 25 50 75 95% LPD Contours

A

B

xy

z

C

• Surface ripple similar for all 3 
nozzles

• Surface ripple greatest at edge
• C has largest surface ripple
• B “best” nozzle

1 cm

Nozzle Geometry Effects
LPDs for nozzles A, B, C:  
Re = 130,000; x = 25 cm
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Re = 53,000

xy

z1 cm

Reynolds Number Effects
LPDs for Nozzle B:  x = 25 cm

• Side and edge fluctuations 
increase with Re

Re = 22,0005 25 50 75 95% LPD Contours

Re = 97,000 Re = 130,000
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AD

x y
z

• Edge, side fluctuations 
increase with x

• σz = 0.10 mm at x = 10 
cm from nozzle exit

• σz = 0.19 mm at x = 25 
cm [scaled HYLIFE-II 
pocket:  x ≤ 30 cm]

⇒ Max. surface ripple 
for HYLIFE-II 1.4 mm

LPDs for Nozzle B:  
Re = 130,000

Mean Standard Deviation

5 25 50 75 95% LPD Contours

x = 25 cm

1 cm

xy

z1 cm

x = 10 cm
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x
yzPP

HC

FS

Flow Straightener
Perforated Plate (PP)
• Open area ratio 50% with 

staggered 4.8 mm dia. holes
Honeycomb (HC)
• 3.2 mm dia. hexagonal cells
Fine Screen (FS)
• Open area ratio 37.1%
• 0.33 mm dia. wires woven with 

open cell width of 0.51 mm
• 195 mm from FS to nozzle exit

All elements stainless steel
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Flow Straightener Blockage
• Flow straightener blocked just upstream of fine 

mesh screen (element most likely to trap debris)
• “Blockage” = 1.5 cm × 0.5 cm rectangle (blockage 

area = 2.5% of total screen area)
• Studied blockage at 

two different locations 
Centered along y, z 
[“center blockage”]
On right edge 
centered along z 
[“edge blockage”]

y x
z
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Blockage Effects

EG

• 2.5% area blockage 19.5 cm 
upstream of  nozzle

y

z

No Blockage

1 cm

No blockage

Center blockage
5

25
50
75

95%

LPDs for Nozzle B:  Re = 97,000; 
x = 25 cm

xy

z

Edge Blockage
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Summary:  Thick Liq. Prot.
Results at 2/3 the prototypical Re imply:
• Standard deviation of side free-surface geometry ~1.4 mm

at bottom of lattice typical of HYLIFE-II
• At higher Re and x, free surface ripple on sheet side AND 

edge can “clip” driver beams
• Surface ripple appears relatively insensitive to small 

changes in nozzle geometry (circular-arc, vs. 5th order 
polynomial, contraction)

• Rounding nozzle corners (→ elliptical nozzle) does not
reduce surface ripple

• Blockage of flow straightener (due to debris, for example) 
will drastically increase surface ripple ⇒ filtration required



ARIES-IFE 9/02 30

What remains to be done?
All concepts:
• Chamber clearing
• Droplet formation/ejection
High-speed film/Wet wall:
• Beam port designs compatible with film flow [GT]
• Surface wettability [GT]
• Surface curvature [GT]

Porous wall/Wetted wall:
• How does heat transfer affect film stability?
Thick liquid protection:
• Vacuum effects (We) on sheet breakup
• Oscillating sheets at high Re
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