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Outline

• Run ABLATOR for FLiBe and Pb cases to confirm 
simple modeling results and obtain better 
understanding of any integrated effect 

• Follow up on determination of FLiBe properties 
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Physical Properties for Film Materials

= 1.06×107 - 2347 T T (* *) = 46.61 - 0.003 T T +4.77×10-7 TT22

(=8.6x106 at 1893 K))
hfg (J/kg)

2413 - 0.488 T11291 – 1.1647 TDensity (kg/m3)

732.2600.5Tmelting (K)

FLiBePbProperty

Log10 (Ptorr) = 
9.38 - 10965.3/T

Log10 (Ptorr) = 7.91 - 9923/TVapor Pressure

4498.8 (* )4836Tcritical (K)

2347

1687

=183.6 -0.07 T -1.6x106 T-2

+ 3.5x10-5 T2+ 5x10-9 T3
CP (J/kg-K)

1893Tboiling, 1 atm (K) 

All temperatures, T, in KAll temperatures, T, in K

(*) (*) XiangXiang M. Chen, Virgil E. Schrock and Per F. Peterson, “The SoftM. Chen, Virgil E. Schrock and Per F. Peterson, “The Soft--Sphere Equation of State for Liquid Sphere Equation of State for Liquid FLiBeFLiBe,” ,” 
Fusion Technology, Vol. 21, 1992.Fusion Technology, Vol. 21, 1992.

(**) Derived from Cp and the Cohesive energy @ 1atm.(**) Derived from Cp and the Cohesive energy @ 1atm.
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X-ray Spectra and Cold Opacities Used in 
Aerosol Source Term Estimate
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• X-ray spectra much softer for indirect drive target (90% of total 
energy associated with < 5 keV photons 

• Cold opacity calculated from cross section data available from LLNL 
(EPDL97) 
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Phase Explosion (Explosive Boiling)
•• Rapid boiling involving homogeneous 

nucleation

• High heating rate 

- Pvapor does not build up as fast and thus falls 
below Psat @ Tsurface

- superheating to a metastable liquid state 

- limit of superheating is the limit of 
thermodynamic phase stability, the spinode
(defined by ∂P/∂v)T = 0)

•• A given metastable state can be achieved in 
two ways:

- increasing T over BP while keeping P < Psat
(e.g. high heating rate) 

- reducing P from Psat while keeping T >T sat
(e.g. rarefaction wave)

• A metastable liquid has an excess free 
energy, so it decomposes explosively into 
liquid and vapor phases.
- As T/Ttc > 0.9, Becker-Döhring theory of 

nucleation indicates avalanche-like and  
explosive growth of nucleation rate (by 
20-30 orders of magnitude)

dN
dt

= Aexp(
−∆Gc
kT

) ∆Gc =
16πσ 3

3(ρoh fgβ )2;
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Photon Energy Deposition Density Profile in 
FLiBe Film and Explosive Boiling Region
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Photon Energy Deposition Density Profile in Pb
Film and Explosive Boiling Region
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Summary of Results for Pb and FLiBe under the Indirect 
Drive Photon Threat Spectra

FLiBe vapor 
(1 mtorr ≡ 886 K)

Pb vapor 
(1 mtorr ≡ 910 K)

0.170.15Vapor quality in the 
remaining 2-phase region

18.029.14Cohesive energy, Et  (GJ/m3)

4.07

1.66×105

2.46δexplosive boil. (µm)

2.44×105Pvapor,interface / P0

3.9612.89mexplosive boil. (kg)

• Tsat estimated from Pvapor,interface ≡ initial vapor pressure (P0=1 mtorr) heated by photon 
passage plus additional pressure due to evaporation from film based on chamber volume

• mexplosive,boil would be lower-bound source term for chamber aerosol analysis
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Processes Leading to Aerosol Formation following High 
Energy Deposition Over Short Time Scale
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ABLATOR Computer Model
(Ablation By Lagrangian Transient One-D Response) 

Energy deposition from X-ray source (cold opacities)
• Transient thermal conduction

• Thermal expansion and hydrodynamic motion

• Material removal mechanisms

Surface vaporization

Thermal shock/spall

Explosive boiling (homogeneous nucleation)

• An explicit scheme for time advancing in time

• Equation of state (EOS)

Gruneisen for solid and liquid

Ideal gas EOS for vapor phase
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Comparison of ABLATOR and Simple Volumetric Model 
Results for Lead Under 458MJ ID Photon Threat Spectra
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Observations from  of ABLATOR Study
• Results from simple model agree reasonably well with ABLATOR results 

tending to be somewhat conservative

• This suggests that the simple model could be used for scoping analysis of 
aerosol source term
- Lower bound ablated thickness based on explosive boiling
- Upper bound ablated thickness based on 2-phase region

• Uncertainty still remains about the form of the source term (i.e vapor, liquid 
droplet size distribution and density...)
- Should be part of future effort
- ABLATOR could be a useful tool 

with modifications
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• ABLATOR runs based on ideal gas 
properties
- Results show high vapor temperature 

and ionization
- Need properties for high temperature 

FLiBe including dissociation and 
ionization for more accurate analysis
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FLiBe Thermodynamic Properties Used at Present
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The Soft-Sphere Equation of State for Liquid FLiBe
takes into account the dependence on ρ and T(*).

Chemical equilibrium codes utilizing data from JANAF 
tables are used (e.g. the computer code  STANJAN 
from Stanford Univ.)

Fitted Equations of State for Flibe Gas(**).

Inaccuracies Include: 
Use of Post-Jensen ionization data calculated from the Corona 
equilibrium (valid only for extremely low densities and very 
high temperatures-optically thin plasma) and show no 
dependence on density.

Post-Jensen data give no information on the individual 
populations needed for the internal energy computation and so 
further approximations have to be made.

No Coulomb corrections.

No excitation energies included in the computations of internal
energies.

Calculations of more accurate 
FLiBe thermodynamic 
properties at high Temp.

(*) Xiang M. Chen , Virgil E. Schrock, and Per F. Peterson “ The soft-sphere equation of state for liquid Flibe,” Fusion Tech. 21, 1525 (1992).

(**) Xiang M. Chen, Virgil E. Schrock, and Per F. Peterson, “Fitted Equation of State for Flibe Gas,” Fusion Technology 26, 912 (1994).
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Ionization Equilibrium & Validity of LTE Assumption
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(*) W. (*) W. EbelingEbeling et al, Theory of Bound States and Ionization Equilibrium et al, Theory of Bound States and Ionization Equilibrium 
in Plasmas and Solids (in Plasmas and Solids (AkademicAkademic--VerlagVerlag, 1976) , 1976) 

(**) T. Fujimoto et al, Phys. Rev. A 42, 6588 (1990). (**) T. Fujimoto et al, Phys. Rev. A 42, 6588 (1990). 
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Thermodynamic Functions
(Pressure and Internal Energy)
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Thermodynamic Functions (cont.)
Enthalpy, Specific Heat, Adiabatic Exponent and Sound Speed
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Comparison with Results from Chen et al.,(*)
(*) Xiang M. Chen, Virgil E. Schrock, and Per F. Peterson, Fusion Technology 26, 912 (1994).
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Comparison of Newly Derived High Temperature FLiBe
Properties with Chen’s Derivations

• Up to ~65% difference between Chen’s and the new derivation 
for pressure and ~150% for internal energy

• Property data available for use by others

• Need to modify ABLATOR to utilize new data and to run cases
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Summary Slide on Future Effort

• Need better characterization of aerosol source term in terms of vapor/liquid 
characteristics of ejecta (ARIES/UCSD,...)
- Better understanding of explosive boiling, other ablation mechanisms (spalling) to 

estimate form of expelled vapor/liquid
- Can be based on ABLATOR with modifications

• Need experiments to measure amount of ablated material and form of ejecta for 
better understanding and for model validation (IFE program) 
- Explosive boiling can be simulated by laser/material interaction experiment (similar 

heating rate)

• Need more detailed aerosol modeling in chamber (ARIES/INEEL, UCSD,….)
- More accurate model for FLiBe
- More accurate source term including initial cooling down of plasma to state at 

threshold of nucleation

• Need experiments to simulate aerosol formation and transport for better 
understanding and for code validation (IFE program)
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• Use explosive boiling results as input for aerosol calculations
• Perform aerosol analysis to obtain droplet concentration and sizes prior to next shot 

(NOT DONE YET)
• Apply target and driver constraints (e.g. from R. Petzoldt)

Example Aerosol Operating Parameter Window
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• Need aerosol analysis for explosive boiling source case for Pb and FLiBe
• Need target tracking constraints for FLiBe
• Need to finalize driver constraints on aerosol size and distribution

From P. Sharpe’s preliminary calculations for Pb

100 ID: 580 µmDD: 0.05 µm

Tracking (only as example)
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Extra Slide 
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Example of ABLATOR Results
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