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                                                          ARIES-IFE Study of HIF

                        Ballistic Transport
            chamber holes  5 cm radius
                           most studied

                   Pinch Transport
        chamber holes  0.5 cm radius
               higher risk, higher payoff

            Transport
           Mode

Chamber
Concept

    Vacuum-ballistic  

    vacuum

  Neutralized-ballistic  

  plasma generators

 Preformed channel  
  ("assisted pinch")
 laser + z-discharge

     Self-pinched  

        only gas

Dry-wall  
 6 meters to wall

Not considered now:
Requires 500 or
   more  beams

Not considered:
   insufficient neutral-
   ization for 6 meters

Option:  uses
    1-10 Torr

    2 beams

Option:  uses
    1-100 mTorr

  2-100 beams

Wetted-wall  
 4-5 meters to

    wall

       HIBALL (1981)
 Not considered:
 Needs  0.1 mTorr
        leads to 
                              

      OSIRIS-HIB (1992)
Possible option: but
  tighter constraints
  on vacuum and
  beam emittance

Option:  uses
    1-10 Torr

    2 beams

PROMETHEUS-H (1992)
Option: uses
    1-100 mTorr

  2-100 beams

Thick-liquid wall  
  3 meters to wall

 Not considered:
 Needs  0.1 mTorr
        leads to 

   HYLIFE  II (1992-now)
 Main-line approach:  
   uses pre-formed
   plasma and 1 mTorr
   for 3 meters
       50-200 beams

 Option:  uses
     1-10 Torr

     2 beams

Option: uses
    1-100 mTorr

  2-100 beams

Transport for several chamber concepts currently being studied



LSP code* used for simulation of
self-pinched ion beams

• 1D, 2D and  3D particle-in-cell and cloud-in-cell

• Energy-conserving electromagnetic and electrostatic
algorithms

• Hybrid fluid-kinetic descriptions for electrons with
dynamic reallocation

• Particle interactions include: scattering, energy transfer,
ionization, stripping and charge-exchange

• Cold plasma initialization, target-photon
ionization/stripping

• Surface physics includes Child-Langmuir emission,
surface heating, neutral thermal/simulated desorption

*See D. R. Welch, et al., Nucl. Instrum. Meth. Phys. Res. A 464, 134 (2001).



Self-pinched chamber transport scheme

Target

Chamber Wall

~ 3 - 6 m

3-cm radius beams are focused
outside of chamber
down to ~3-mm radius.

Charge and partial current neutralization provided by impact
ionization of highly stripped ion beam in 10’s mTorr gas

Small-radius openings
in chamber wall minimize
damage to components
outside of chamber.

Final Focus

Section
10-150 mTorr Xe



SPT schemes continued…

Target

Chamber Wall

~ 3 - 6 m

Many beams combined and 
adiabatically focused down to 
~0.5-mm radius outside chamber.

Small-radius openings
in chamber wall minimize
damage to components
outside of chamber.

Ib = 80-150 kA

Two-beam SPT with adiabatic lens focusing outside of chamber 
(assisted-pinch-like scenario).



Self-pinched transport is predicted to occur
within a gas pressure window:

• Maximum pinch force occurs
when beam-impact ionizes a
plasma density roughly that of
the beam on time-scale of beam
density rise length, τ

• Optimized for normalized
trumpet length*: 

R = τ σ ng/4Z =1

• Trumpet shape and non-local
secondary ionization  supply
neutralization without ve = vb

* D.R. Welch and C.L. Olson, Fusion Eng. and Des. 32-33, 477, 1996.
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Simulations indicated that a large net current
fraction can be generated for SPT of a 1.5-MeV,

50-kA proton beam*

1.5 MeV protons
Ib = 50 kA
rb = 2.8 cm
θ = 53 mrad
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*D. V. Rose, et al., Phys. Plasmas 6, 4094 (1999).
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Comparison of measured [with Li(Cu) nuclear activation] and predicted
proton charge collected on a 5-cm-radius target at 50 cm into the 

transport region shows the same SPT pressure window.*

Results from SPT experiment on Gamble II at NRL
[*P. F. Ottinger, et al., Phys. of Plasmas 7, 346 (2000)]



LSP calculates maximum Inet near
normalized trumpet length of unity
• LSP simulations of 10-kA,

4-GeV Pb+1 beam
• Beam trumpet 7 mm to 0.35

mm in 12 cm
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Cross-sections…
• Equilibrium charge-state for Lead beam assumed to be +65.

• Cross-section for 4 GeV Pb+65 impacting neutral Xenon
(ionization potential U = 12.13 eV) calculated from limiting
case Gryzinski [*] model [#] (meEb >> MbU) of
7.2e-15 cm2.

• Expected gas pressure for SPT is then

which is then approximately 50 mTorr for τ/vb ~ 1 ns.

[*] M. Gryzinski, Phys. Rev. A 138, A322 (1964).
[#] B. V. Oliver, P. F. Ottinger, and D. V. Rose, Phys. Plasmas 3, 3267 (1996).
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Pinched transport [both assisted pinch (APT) and SPT] is feasible
for net current chosen to match the beam divergence.

Beta = 0.2
rb = 0.3 (cm)

Beam Postulated Beam Beam I_A beta_perp beam- Betatron
Beam Beam Particle Net Number Plasma Alfven from Inet> cyclotron Wave-
Ion Charge Current Current Density Freq Current I_A*(theta)̂ 2 freq. length
Mass State (kA) Fraction (cm-3) (s-1) (MA) (s-1) (cm)

207 65 1 0.01 3.68E+12 7.04E+12 19.94 0.0011 1.30E+06 233.48
207 65 1 0.05 3.68E+12 7.04E+12 19.94 0.0026 6.52E+06 104.42
207 65 1 0.1 3.68E+12 7.04E+12 19.94 0.0036 1.30E+07 73.83
207 65 1 0.15 3.68E+12 7.04E+12 19.94 0.0044 1.96E+07 60.28
207 65 1 0.2 3.68E+12 7.04E+12 19.94 0.0051 2.61E+07 52.21
207 65 1 0.25 3.68E+12 7.04E+12 19.94 0.0057 3.26E+07 46.70

Bennett pinch condition: .2
An II =

Sample parameters assuming an average charge state for lead 
ions (Z= +65), 1 kA beam particle current, and beam radius of 3 mm…



2-D Simulation Geometry

Xe neutral gas fill

3-mm, Pb+65, 4 GeV, 
1 kA (particle current)

100 - 300 cm

5 
cm

CL

Electron emission
from left wall



1-m propagation demonstrates pinched
equilibrium for R = 0.14

Transient
evaporation
of current
due to
mismatch

10 ns

20 ns
Tightly
pinched
beam core
with 6-kA
net current

65-kA, 4-GeV Pb+65 beam

8-ns pulse

τ = 0.5 ns, 7-3.5 mm radius

50-mTorr Xe gas fill

Only 61% transport within
6 mm radius after 1-m

Tolerable steady-state
erosion rate ∼ 10-3



At 65 mtorr, beam develops an equilibrium
half-current radius of 0.5 cm

~5 kA of net current



For the special case of no beam emittance, the
beam body develops a 1-mm (!) half-current

radius, but the head and tail are not confined…

Net Current of ~ 20 kA, 65 mtorr Xe



Steady-State Erosion Model For
Propagating Ion Beams[*]

• Model accounts for non-zero beam erosion front
velocities and the finite energies of beam particles
radially exiting the beam through a single
parameter α.

• Model in very good agreement of earlier
simulations for a single value of the parameter α
[*] and previous analyses for relativistic electron
beams [+,#].

[*] D. V. Rose, T. C. Genoni and D. R. Welch, to appear in Phys. Plasmas (2002).
[+] W. M. Sharp and M. Lampe, Phys. Fluids 23, 2383 (1980).
[#] M. Mostrom, D. Mitrovich, D. R. Welch, and M. M. Campbell, Phys. Plasmas 3,

3469 (1996).



Erosion Rate:

• Dimensionless erosion rate from model is determined
by solution of:
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Subscript “F” denotes the front velocity, α is a dimensionless
parameter, In is the net current, Ib is the beam current, L is a
dimensionless inductance, and M = Amp/Zme.



Simulations of self-pinched proton beams in
dense (760 Torr) gas are in good agreement

with the model for a fixed value of α[∗]:
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* D. V. Rose, T. C. Genoni, and D. R. Welch, to appear in Phys. Plasmas (2002).



Status
• Self-pinched transport is an attractive chamber

propagation scheme; small entrance holes in the
chamber wall, no hardware (sacrificial structures) in
chamber.

• LSP simulations have identified a propagation window
in 10-150 mTorr Xe.

• Efficiency of energy transport is presently being studied.
– Simulations so far have shown evaporation at early stages of

transport can result in ~30% losses.

– Steady-state erosion rates are predicted to be small.



Planned Activities for FY02

• Generic scaling of three modes for chamber transport
(neutralized ballistic, preformed channel, self-pinched) and
participation in the HIF point design using neutralized
ballistic transport.

• LSP simulations of self-pinched transport, including a
pressure scan of Inet vs. pressure for Xe gas.  Study of
erosion and evaporation, equilibrium transport, and
transport efficiency of self-pinched ion beams.

• For preformed channels, study of fundamental limits to
channel radius using LSP for breakdown and proposed use
of Alegra or other MHD code for radiation/MHD evolution
of channel.

• Work with Sandia National Laboratories on power plant
scenario using self-pinched ion beam transport.


