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Outline of Talk
• Assisted-Pinch Transport

– concept

– self field evolution

– transport efficiency

– stability

• Self-Pinched Transport
– concept

– pinch force mechanism

– propagation window

– status of 3d modeling

• Transport Issues



IPROP Modeling of Assisted
Pinch Transport

Equilibrium Stability
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Key physics issues involve the
evolution of self fields

• Beam must first be captured at small radius
by 50 kA discharge current - adiabatic lens

• 6-MA electrical beam current has potential
for huge self fields given finite plasma
conductivity

• Strong plasma return current can drive
“hose” instability



IPROP* simulates HIF beam interaction with
discharge channel in  2 and 3D

• IPROP is a quasi 3D EM hybrid code

• 2 fluid model for the plasma, PIC beam ions

• Extensive models for xenon gas breakdown
physics

*D. R. Welch, et al., Phys. Plasmas 1 (1994) 764.



 Simulation beam and gas conditions
• 4-GeV, 6 MA Pb+72 ions

• 15-cm radius beam is first transported ballistically 10 meters to the
discharge. Micro-divergence nominally 1 mrad.

• Discharge initial parameters: 
50-kA current  
5-Torr, 3-eV ambient Xe 
Axial position-dependent radius, reduced density (to 0.5 Torr 
minimum), ionization fraction (0.9 peak). Current density, reduced
gas density and ionization fraction have square profiles

Pb+72

10 m15 cm

ballistic
transport

Adiabatic lens
Chamber entrance



Effective current - sum of discharge
and self currents - reaches 80 kA

• Results for nominal
parameters

• 6 snapshots of
effective current

• 2-4 :s plasma return
current decay time
permits self field
growth

Beam at snapshots



Plasma heats ohmicly and from
beam impact - decay time increases

• Red contour is 3.3 keV, beam head at 375 cm

• Enhanced sigma reduces magnitude of B oscillation

Enhanced heating
at beam waists



Beam oscillations imprinted on
self magnetic fields



Beam halo growth from interaction
with varying B2(z)

• 87% of beam
transported over 4.5-m
length

• 3.5-mm RMS radius



Finite conductivity results in some self
field growth, beam loss

• Plasma current decay time scales as F r2, reaches 2-
4 :s (enough to permit 20-30 kA self field for 8 ns
beam)

• Inductive fields rise with net current, reducing beam
energy

• Oscillating beam imprints oscillating magnetic well

• Ions interact with changing B fields and heat

• Despite above effects, 87% beam energy
transported, 3.5-mm  RMS radius.



• IPROP is run with 2
azimuthal Fourier modes,
m=0,1

• Beam is injected offset
from channel 0.5 mm

• Conductivity profile is held
fixed by initializing a
singly ionized plasma with
a gaussian radial profile

Fixed plasma F profile

• Run91 - 100 eV plasma and
50 kA discharge

• Run92 - 10 eV plasma and
50 kA discharge

• Run93 - 30 eV plasma and
12.5 kA discharge

IPROP simulations of assisted-pinch
hose instability



Nominal conductivity simulation shows
no evidence of hose

• Fixed 5  microsecond
decay time -
consistent with 2D
breakdown
calculations

• 100 eV plasma
temperature

• 50 kA discharge

• offsets damp



Highly resistive case - less than an
e-fold growth

• 10-eV temperature,

• 50 kA discharge

• Large net currents,
beam pinches

• Weak hose growth
that damps rapidly



Low discharge current, medium
conductivity case

• 30 eV temperature,
12.5-kA channel

• Hose again is very
weak



Simulations suggest weak assisted pinch hose

• Hose instability does not appear to be an issue
for assisted pinch

• Neglected effects of beam scattering, ionization
should be stabilizing

* Ed Lee’s stability condition from Pinch Transport Workshop, 2001

Id dp / (Ib b ) > 1* IPROP result
____________________________________________
run91 5 rock stable
run92 0.4 weak instability
run93 0.26 weak instability



Optimization of beam transport -
work in progress

• Self-field strength limits energy transport
efficiency and spot size

• 87% transport and 3.5 mm RMS spot size
calculated over 4.5-m transport

• Weak self-hose instability calculated

• Need to develop technique for hollowing beam
profile to better match recent target designs



LSP Modeling of Self-Pinched
Transport

Propagation of
pinched beam



2 possible scenarios for self
pinched transport

• Beams combined into 2 as
in assisted pinch
– large currents have potential

for instability without
discharge channel

• Use 100-200 beams with
1-4 kA per beam (as in
Neutralized Ballistic
Transport)
– requires more beam ports,

beams overlap near target

Graphic provided by P. Peterson, UCB



Self-pinched transport relies on limited beam
impact ionization in a low pressure gas

• Ionization electrons provide good charge but imperfect
current neutralization
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Self-pinched transport is predicted to
occur at an intermediate gas pressure

• Maximum pinch force
occurs when beam-impact
ionizes a plasma density
roughly that of the beam on
time-scale of beam density
rise time, /vb

• Optimized for: 
R =  ng/4Z =1*

• Trumpet shape and non-
local secondary ionization
help supply neutralization
without ve = vb

*D.R. Welch and C.L. Olson, Fus. Eng. and Des. 32-33, 477 (1996).
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Simulations indicated that a large net current
fraction can be generated for SPT of a 1.5-MeV,

50-kA proton beam

1.5 MeV protons
Ib = 50 kA
rb = 2.8 cm
θµ = 53 mrad  
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Consistent with results observed in SPT experiment on
Gamble II at NRL (Ottinger et al., Phys. of Plasmas 7, 346, 2000)



Identify pinched transport
gas/plasma constraints for HIF

chamber transport
• New LSP* code calculations

• 10-kA, 4-GeV Pb+ beam, 2-ns rise in current

• J = 2 ns trumpet-shaped beam envelope:
– 1-cm max radius falling to .5 cm in 2 ns

• 3-300-mtorr FLiBe pressure (R = .1-10)

• Normalized plasma density N = np/nb=0-1
– nb = 1.3x1013 cm-3

• Beam impact ionization only (ignore avalanche)
* Welch, et al., Nucl. Instrum. Meth. Phys. Res. A 464, 134 (2001).



Weak net force for pencil beam in gas

• Significant fields limited to
beam edge (skin depth effect)

Constant enclosed net current Electric fields, 918 kV/cm max

beam
density



Trumpet beam shape enlarges net-current sheath

• Large net current with trumpet

• Sheath thickness defined in
low density beam front

Constant enclosed net current Electric fields, 529 kV/cm max



Electron density follows trumpet shape

• Ion density indicates
ionization position

Log plasma ion densityLog electron density

Log beam
density



LSP calculates strength of pinch force
sensitive to gas, plasma densities

• Normalized gas density, R = JF ng/4Z

• Normalized plasma density (R=1),     N = np / nb

Pinch force optimized near R = 1-2, constrains chamber pressure

Falls off  N > 0.1, pinch may weaken near target due to photo-ionization
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Beam Density contours (cm-3)

30-mtorr flibe  R = 1, F = 0

4 ns 9 ns

15 ns

Beam maintains pinch after
detaching from wall



Pinch force stabilizes at 3 kA in
meter long simulation

• Pinch force is still sufficient for confinement

• Electric fields are small, < 100 kV/cm



Two-beam interaction in 3-D LSP
simulation geometry

Pb+5, 4 kA (electrical) current,
np = 5e13 cm-3, nb = 1e12 cm-3



No observed deflection for these
2 weak beams in N=10 plasma

• Need to examine higher currents, ionization
and lower plasma densities
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Research in self-pinched transport
for HIF beams has just begun

• Confirmed the SPT mechanism for HIF beams
– constraints of gas pressure and plasma density

• Pinch is sustained after detachment from wall

• Simulation of 3d beam-beam interaction underway

• Many issues remain:
– Detailed beam-gas interaction (such as beam stripping)

– Beam losses from inductive fields, trumpet formation

– m=1 (hose) stability, beam-beam interactions

– Steering and capturing beam

– Channel expansion from JxB force


