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Use ARIES-AT Brayton Cycle as Example to Illustrate Effect on
Overall Cycle Efficiency of Running a Low Temperature

Chamber Wall and a High Temperature Blanket
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• Min. He Temp. in cycle (heat
sink) = 35°C

• 3-stage compression with 2 
inter-coolers

• Turbine efficiency = 0.93

• Compressor efficiency = 0.88

• Recuperator effect.  = 0.96

• Cycle He fractional P = 0.03

• Intermediate Heat Exchanger
T(Pb-17Li/He) ~ 50°C
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Chamber Wall He Temperature Dictated by Maximum
Cycle He Temperature and Compression Ratio
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• SiC/LiPb chamber

• NRL target: 161 MJ yield, 6 Hz

• 4 m FW radius; Γ ~ 3.4 MW/m2

• Peak heating is 15 W/cm3 and varies as
(4/R)2 with FW radius

• ~800 MW total nuclear heating in
FW/B/S
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Total Thermal Power in First Wall

From Laila El-Guebaly

Fusion Technology Institute
University of Wisconsin - Madison

• Fraction of output energy:
– X-rays + ions + gamma = 29%

– Neutrons = 71%

• Assume:
–  multiplication factor of 1.1

– ~ 4% nuclear heating in FW

30% of total power in FW

Nuclear Heating in First Wall
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ARIES-ST Power Parameters
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The Chamber Wall Temperature can be Maintained <900 K to
Reduce Radiation to the Target while Maintaining an

Acceptable Cycle Efficiency

Example Case:
• For a TFW of ~100-150°C

and compression ratio of
4.5, the avg. surface Twall
at target injection can be
lowered to ~600°C while
maintaining a cycle
efficiency of 50%
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Dry Chamber Wall Engineering Assessment

• Material Option (C, SiC, W...) (M. Billone)
• Material Configuration to Help Accommodate Energy Deposition
• Protective Chamber Gas

- e.g. Xe
- Effect on target injection
- Effect on laser
- UW has performed detailed comparative studies for different 

material and gas pressure (R. Peterson/D. Haynes)

• Ideal Solution
- Dry wall material configuration which can accommodate 

energy deposition without any protective gas in chamber

• Initial assessment of this possibility
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Approach Relies on More Precise Energy
Deposition Analysis and Engineered Surface

Wall
Configuration

Energy Deposition:
Photons
Fast Ions
Debris Ions

Spatial
Distribution of

Energy
Deposition

Instanteneous
Surface Energy

Deposition

Temporal
Distribution of

Energy
Deposition

Choice of Material

Flat Wall
Engineered Surface:

High eff. surface area
Short time constant

Can chamber
wall

accommodate
energy

deposition
with no

protective
gas?



December 6, 2000
A. R. Raffray, et al., Assessment of Dry Wall Material Configuration

Consider Total Energy Deposited Instantaneously on
Flat Wall Surface As Upper Bound Initial Case

• Energy Accounting from NRL
Direct-Drive Target Calculations:
– X-rays = 2.14 MJ

– Fast Ions = 18.1 MJ

– Debris Ions = 24.9 MJ

• Assume chamber radius = 6.5 m

• Apply resulting energy density
on chamber wall over smallest
computational time increment

He at 400°C

3-mm thick Carbon
Chamber Wall

Energy
Front - Temperature subscript refers to distance 

from surface (microns)
- kCarbon = 400W/m-K



December 6, 2000
A. R. Raffray, et al., Assessment of Dry Wall Material Configuration

Photon Spectrum and Attenuation in Chamber Wall

Energy Deposition from Photon
Interaction in C for Given Spectrum
with:

- No gas
- 0.5 Torr Xe

From  J. Perkins, LLNL 

X-ray Spectrum for NRL Direct-Drive Target
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Fast Ions Spectrum and Attenuation in Chamber Wall

Fast Ion Energy Deposition in C
(Bethe Formula) for Given
Spectrum with:

- No gas
- 0.5 Torr Xe

From  J. Perkins, LLNL 

Fast Ions Spectrum for NRL Direct-Drive Target
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Debris Ions Spectrum and Attenuation in Chamber
Wall

Example Debris Ions Energy Deposition
in C for Given Spectrum with:

- No gas
- 0.5 Torr Xe

From  J. Perkins, LLNL 

Debris Ions Spectrum for NRL Direct-Drive Target
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Consider Total Energy Spatially Deposited
Instantaneously in Flat Wall

• Energy Deposition Estimated from
NRL Direct-Drive Target Spectra for
– X-rays

– Fast Ions

– Debris Ions

• Assume chamber radius = 6.5 m

• Apply resulting spatial energy
deposition per unit volume in
chamber wall over smallest
computational time increment

He at 400°C

3-mm thick Carbon
Chamber Wall

Energy
Front

- Temperature subscript refers to distance 
from surface (microns)

- kCarbon = 400 W/m-K
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Photons and Ions Also Have a Temporal
Distribution
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From R. Peterson and D. Haynes’s presentation 
At ARIES meeting last September

Example Photon Temporal Distribution
Temporal Distribution for Ions Based on

Given Spectrum and 6.5 m Chamber
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Consider Total Energy Spatially Deposited over
Time in Flat Wall

Debris
Ions

Time10ns 0.2 s 1 s 2.5 s

Fast
IonsP

ho
to

ns

Energy
Deposition

- Temperature subscript refers to distance 
from surface (microns)

- kCarbon = 400 W/m-K
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Case with  Total Energy Spatially Deposited over
Time in Flat Wall with Different kCarbon

- Temperature subscript refers to distance 
from surface (microns)

- kCarbon = 100 W/m-K

• Maximum Surface 
Temperature = 1383 °C for 
kCarbon= 400 W/m-K

• Maximum Surface 
Temperature = 1953 °C for 
kCarbon= 100 W/m-K
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Introduce Engineered Surface Configuration

e.g. ESLI Fiber-Infiltrated
Substrate

• Porous Media

- Fiber diameter ~ diffusion 
characteristic length for 1 µs

- Increase incident surface area 
per unit cell  seeing energy 
deposition
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Modeling Porous Fiber Configuration

y

y

Probability for energy front to contact fiber:

over second unit cell, P2 = (1-P1 ) d/(y-d)
over third unit cell, P3 = (1-P1-P2 ) d/(y-2d), etc...

 yeff =yP1+2yP2+3yP3...+nyPn

over first unit cell, P1 = d/y

up to Pn=(1-P1-P2-...Pn-1) d/(y-(n-1)d)
where n=y/d
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For =0.9 and d=10 m, y=28 m, yeff = 54 m

Fiber Density, = d2/4y2

For =0.8 and d=10 m, y=19.8 m, yeff = 29.6 m
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Example Spatial Energy Deposition in Fiber
Based on Photon and Fast Ions Attenuation

Photon Energy deposition Fast Ions Energy deposition

x = distance from side of fiber; y= distance from base of fiber
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Work in Progress

Single
Carbon
Fin

10 m

He at 400°C

1 mm

Example preliminary results for fiber with
instantaneous energy deposition

Future Work:
• Ascertain effect of spatial+temporal energy

deposition distributions
• Optimize configuration
• Determine if fiber wall configuration provides

better performance than flat surface
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Sputtering in Fiber Configuration

• Simple mono-energetic 
analysis has been performed
by Marvin Douglas for 
ESLI fibers (Xe, 1.4 keV)

• Initial meeting and exchange
of information

• Future effort based on need
and schedule
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M. Douglas’ Analysis Indicates that Sputtering Yield Decreases
as Fiber Length Increases and  Shows a Minima with Carpet

Density Fraction
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Summary

• The Chamber Wall Temperature can be Maintained < 900 K to Reduce
Radiation to the Target while Maintaining an Acceptable Brayton
Cycle Efficiency

• Possibility of Accommodating Energy Deposition with No Gas
– More precise accounting of spatial and temporal distributions of energy

deposition from photons and ions
• E.g. Max. temperature in C slab decreases from 16,000°C (equivalent instantaneous

surface heat flux) to 6000°C (spatial distribution) to 1400°C (spatial + temporal
distributions)

– Engineered porous surface
• Need detailed analysis to assess attractiveness and to optimize geometry


