
FINAL OPTICS MODELING

T.K. Mau and Mark Tillack
University of California, San Diego

ARIES Project Meeting

December 5-7, 2000
University of California, San Diego



OUTLINE

•   Objectives of final optics modeling

•    GIMM surface defect types and modeling approaches

•    Fresnel modeling of multi-layer films

(1)  Oxide-coated Al mirror
            (2)  Contaminated mirror

•    Ray tracing and wave scattering approaches

•    Future plans 



Modeling Objectives

•   The GIMM (grazing incidence metal mirror) is subjected to damages from:

    (1)  X-rays,  (2)  γ-rays,  (3)  neutrons,  (4)  laser radiation,  
    (5)  charged particles, and  (6)  debris. 

•   The primary objective for final optics modeling is to quantitatively analyze 
     the effects of these damages on the quality of laser beam focusing on 
     the target.
     A secondary objective is to more accurately define the design windows
      for the GIMM, such as power density threshold, protective coating, 
      material selection, operational lifetime, than previously done. 

•    Damages to the mirror can have three main effects:

      -   Beam (on target) defocusing, and wavefront distortion

      -    Increased beam absorption at the mirror

      -    Shorter mirror lifetime 



Mirror Defects and Damage Types, and
Approaches to Assess Beam Quality Degradation

Dimensional Defects Compositional Defects

Gross deformations, δ>λ Surface morphology, δ <λ Gross surface
contamination

Local contamination

CONCERNS

• Fabrication quality

• Neutron swelling

• Thermal swelling

• Gravity loads

• Laser-induced

damage

• Thermomechanical

damage

• Transmutations

• Bulk redeposition

• Aerosol, dust &

debris

MODELLING TOOLS

Optical design software Potential scattering theory
(perturbation analysis)

Fresnel equation solver Potential scattering theory
(perturbation analysis)
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Fresnel Modeling of Reflectivity
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•    Wave propagation in four stratified layers of
      media is modeled.  Surface is assumed to be
      smooth (δ << λ ).     [Born & Wolf, Heavens]

•    Each medium is homogeneous, with uniform
      thickness, and is characterized by complex
      refractive index:  n = n ( 1 + i κ )
         n = ( ε/µ )1/2;  κ = attenuation index

•    TE (S) polarization is assumed.

metal substrate

•    Refraction :   n1 sin θ1 = nj sin θj         j = 2,3,4       ( Snell’s Law )

•    Reflection :   ri,i+1 = (ni cos θi - ni+1 cos θi+1) / (ni cos θi + ni+1 cos θi+1)  ( Fresnel )

•    Reflectivity is computed by repetitive usage of the 3-layer formula:

ri  = [ri-1,i + ri+1 exp (i2βi)] / [1 + ri-1,i ri+1 exp (i2βi)]

     where βi = (2π/λo) di ni cos θi ,   i = 2,3 and di is the layer thickness, and

     setting intensity reflectivity as R = | r2 |2.



S- and P- Polarizations
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•   Consider a plane EM wave propagating
     through a stratified medium with ε = ε(z).

•   Any arbitrarily polarized plane wave may
     be resolved into two waves:
     (1)  TE (S) with Es = Ex , transverse
             to plane of incidence, 
              i.e., y-z plane
             H = (Hy,Hz) = H|| = Hs

     (2)  TM (P) with Hp = Hx, transverse
             to plane of incidence
            E = (Ey,Ez) = E || = Ep 

•   Thus, in vector form, Etot = Es + Ep ,

     as shown in the diagram.
            

Plane of incidence

Film interface



Reflection of S-polarized (TE) waves
including thin oxide coating
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P-polarization undergoes total transmission 
 at θ ~ 60o.

Periodic variation in R is due to interference
  effect in oxide coating.
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Effect of surface contaminants

•   Surface contaminants (such as carbon) on mirror protective
    coatings can substantially alter reflectivity, depending on
    layer thickness and incident angle.

•   Uniform film thickness is assumed.

Carbon film thickness (nm)
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Ray Tracing and Optical Design Software

•    When surface defect δ > λ, effect on beam focusing can be assessed using
       the ray tracing approach.

•    There are numerous optical design programs that perform ray tracing
      on all types of surfaces and media with complex refractive index.

•    One such design package is ZEMAX-EE from Focus Software, Inc.
       Features include:
              -   Complete polarization ray tracing and analysis capability
                   (transmission, reflection, absorption, polarization state, etc)

-   Supports  arbitrary user defined surfaces (shape, optical properties)
-   Extensive thin film modeling capability

   -   Integrated tolerance analysis capability: RMS spot radius, RMS
                    wavefront error, etc as criteria.
        -   Nonlinear model of thermal effects  on index of refraction and

     material expansion.

•   Procurement of an optical design software package is being considered. 



Wave Scattering from Rough Surfaces

•   When surface roughness or deformation δ < λ, part of incident wave is
     scattered off the specular direction in a diffuse manner, thus degrading
     the focusing of the beam on a target.

•   Two analysis approaches:
     -   Perturbation theory (Raleigh-Rice):  valid for δ << λ
          Expand                                                       where
          Surface roughness characterized by 2-D power spectral density:

    -   Physical optics (Kirchoff): valid for δ < λ
         Solve for total scattered field (coherent+diffuse), with approximation.
         For Gaussian δ distribution, overall scattered intensity is given by

                                       , where g << 1 for slightly rough surfaces,
          and g >> 1 for very rough surfaces;     Io is energy scattered from
          smooth surface, and Id is diffuse intensity.

•   Perturbation approach is simpler; physical optics technique is valid over
     wider range of surface roughness.
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SUMMARY & FUTURE  PLANS

•   Fresnel analysis of oxide-coated metal mirrors has been carried out
      using a 4-layer model and assuming smooth surfaces.
      -   Surface contaminant can have impact on reflectivity.

•   Investigation into effects of mirror defects and induced damages
     on beam focusing has just begun.
     Goal is to determine design windows for GIMM and other optical
      subsystems for ARIES/IFE studies by relating these damages to
      heat deposition and neutron fluence.

•   Two approaches are being examined:
     (1)  Ray tracing with vendor design software ( δ > λ )
            ZEMAX-EE is a candidate package.
     (2)  Wave scattering approach ( δ < λ )
            Further study is required to identify appropriate method:
              Perturbation analysis or physical optics?
      * Examine if ZEMAX can be used for this purpose.
      *  Search for wave scattering software in public domain.


