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3. EQUILIBRIUM, STABILITY, AND
TRANSPORT

3.1. INTRODUCTION

The ARIES-I design is a conceptual commercial reactor based on modest extrapola-
tion from the present tokamak physics data base. For a commercial reactor, steady-state
operation is preferable because of the many undesirable features of pulsed operation
(such as thermal fatigue of in-vessel components and magnets and the requirement for
a thermal-energy storage system), which lead to a short reactor lifetime and high costs.
For an economical steady-state reactor, the recirculating power fraction should be <20%.
This can be achieved by reducing the amount of plasma current to be driven by external
means (i.e., minimizing the total plasma current and maximizing the bootstrap-current
fraction) and also by using an efficient, cost-effective current-drive technique.

The ARIES-I design operates at a relatively high plasma aspect ratio (A = 4.5), a
low plasma current (I, = 10.2 MA), and a high on-axis magnetic field (B, = 11.3 T).
As a result, the poloidal beta is high and a high bootstrap-current fraction of 0.68 is
predicted. Because of the low plasma current and high bootstrap-current fraction, only
3.3 MA of current should be driven by external means. Therefore, a steady-state reactor
with relatively small current-drive power is possible. Systems-code analysis confirms that
an optimum first-stability tokamak reactor operates with high aspect ratio, low current,

and high bootstrap-current fraction. The key parameters of the ARIES-I reactor are
listed in Table 3.1-1.

The ARIES-I reactor parameters are found through extensive and self-consistent itera-
tions among magnetohydrodynamic (MHD) equilibrium and stability, transport, current-
drive, and edge-physics analyses. Engineering constraints imposed by system integration
for a power reactor have also been taken into account. In the areas of MHD equilibrium
and stability and plasma transport, the regime of operation of the ARIES-I plasma is
different from current tokamak experiments in many aspects including:

1. Operating at a relatively high plasma aspect ratio (4 = 1/e = 4.5), a low plasma
current (I, = 10.2 MA), a high poloidal beta (¢3, = 0.7), and plasma current pro-
files characterized by on-axis safety factor, ¢, ~ 1.3, and 95% flux safety factor,
gos > 4.
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Table 3.1-1.
Key Parameters of the ARIES-I Reactor

Major radius, R (m) 6.75
Minor plasma radius, a (m) 1.50
Aspect ratio, A 4.50
Elongation, Ky 1.80
Triangularity, 8 0.70
Magnetic field at coil, B, (T) 21.00
Magnetic field on axis, B, (T) 11.33
Plasma current, I, (MA) 10.20
Safety factor on axis, g, 1.30
Edge safety factor, ¢* 3.90
Peak electron density, neo (10%° m™3) 1.88
Average electron density, n. (10*° m~3) 1.45
Separatrix electron density, n, (102° m~3) 0.87
Peak electron temperature, T (keV) 36.62
Average (density-weighted) electron temperature, T, (keV) 19.30
Volume-averaged electron temperature, T, (keV) 17.44
Toroidal beta, 3; (%) 1.90
Effective charge, Z s 1.65

Bootstrap-current fraction, Igs/I, 0.68
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2. Operating at A =1/e = 4.5 and placing the poloidal-field (PF) coils outside the
toroidal-field coils leads to large stored energy in the PF coils. Minimizing this en-
ergy will place constraints on the choice of plasma elongation, x, and triangularity,
§. The MHD equilibrium analysis is reported in Sec. 3.2.

3. Operating at MHD-stability beta limit against high-n ballooning and n = 1 kink
modes with the conductive wall at infinity and using plasma profiles consistent
with current-drive (driven current density) and transport (flat density and narrow
temperature profiles) analyses. The MHD f limit is discussed in Sec. 3.3.

4. Placing the passive conductor for stabilizing the vertical motion of the plasma
behind the blanket, which reduces the engineering constraints (cooling, neutron
damage, etc.), leads to a reduced plasma elongation, kx = 1.8. The vertical stability
of the ARIES-I plasma is considered in Sec. 3.4.

5. Operating an ignited plasma with high synchrotron radiation caused by high on-axis
magnetic field, high electron temperature, and a poorly reflective first wall. Ab-
sence of deep fueling techniques leads to a flat density profile. The time-dependent
transport analysis of the ARIES-I plasma is presented in Sec. 3.5.

3.2. MHD EQUILIBRIUM

3.2.1. Minimizing Stored Energy of Poloidal-Field Coils

Operating at A= 1/e = 4.5 and placing the poloidal-field (PF) coils outside the
toroidal-field (TF) coils leads to large stored energy in the PF coils. In this section,
a prescription for choosing plasma shape (plasma elongation, &, and triangularity, §) to
minimize this stored energy is presented.

Placing the ARIES-I PF coils external to the TF coils permits the use of a multipole
expansion technique [1, 2] to describe accurately the PF-coil magnetic fields used in
MHD equilibrium computations performed with the tokamak simulation code (TSC) [3]
or the HEQ code [4]. Limiting the multipole expansion to hexapole and lower moments
minimizes the number of dependent variables required to describe the plasma shape.
Using the multipole expansion technique to examine plasma equilibria parametrically
for a range of plasma elongation and triangularity values resulted in a prescription for

minimizing the PF-coil stored energy, Wpr, which is used in the ARIES systems code
(Sec. 2).
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The TSC was modified so that the poloidal flux produced by a PF-coil set could be
determined by specifying either the PF-coil locations and currents or the amplitudes of
the even and odd nullapole, dipole, quadrupole, hexapole, and octopole moments, and
the even decapole moment in the multipole expansion series [1]. In addition, the TSC
was modified to perform the inverse operation of decomposing the poloidal flux produced
by a PF-coil set into the multipole components of the same truncated series. The TSC
was then used to analyze parametrically the equilibrium of the interim design point I

given in Table 3.2-1.

Since the PF coils are relatively far from the plasma, the cost of the coils to pro-
duce the higher order multipoles is high, making them undesirable. Therefore, in this
analysis, the multipole expansion was limited to hexapole and lower moments, thereby
reducing the number of variables. The plasma current, toroidal field, profile form factors
(Sec. 3.2.2), major and minor radii, and the nullapole and dipole moments were held

Table 3.2-1.
Fixed Parameters for TSC Parametric Equilibrium Analysis

Interim design poiht I II
Plasma current, I, (MA) 7.26 10.5
Toroidal field, B; (T) 12.38 12.72
Profile form factors

a ~30 3.0

0 —-2.5 -3.0

8, 324  1.94
Major radius, R, (m) 6.0 6.12
Minor radius, a (m) 1.0(@) 1.36
Nullapole current equivalent (MA) 0.351 0.271
Dipole current equivalent (MA) 0.429 0.517

(@For A = 4.5, a = 1.333.
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fixed at the interim design values. The ratio of the hexapole to quadrupole amplitudes
was selected as the dependent variable. The absolute magnitudes of these two amplitudes
were determined as the minimum amplitudes that are necessary to produce a separatrix
with the specified minor radius. This algorithm, subsequently, generates a set of plasma
equilibria that requires only low-order multipoles which can be efficiently produced by
the external PF coils. Consequently, the external field solutions have minimum PF-coil
current, Y |Ipr|, and, hence, minimum Wpr. Because both plasma triangularity, &,
and elongation, k, vary as the ratio of the quadrupole to hexapole moment varies, this
algorithm yields the § that minimizes the PF-coil stored energy, Wpr, for a given k.

The results of this analysis are shown in Fig. 3.2-1. Plasmas with shapes correspond-
ing to the region below the §-x correlation of Fig. 3.2-1(A) would not have a separatrix,
and those above the correlation would either have a smaller minor radius (larger A) or
would require higher multipole moments and larger Wpr to maintain the same minor
radius. This analysis also produced the correlation between the equivalent multipolar
current, which scales approximately as the square root of Wpp, and . This correlation,
shown in Fig. 3.2-1(B), indicates that Wpp increases as x is decreased (§ increases) for
the range of 1 < kK < 2.7 considered. It was found, however, that this Wpp-k correla-
tion did not have a significant impact on determining the final design values of x and §

(Sec. 2).

To pursue further the issue of minimizing Wpp, a code (FLXCON) was developed
to determine the locations and currents of a PF-coil set that would reproduce the flux
pattern of a given set of multipole moments. The FLXCON code moves the coils along
a specified surface while minimizing an object function defined as the sum of two terms.
The first term measures the relative error with which the coils reproduce the flux of the
given set of multipole moments on a test surface representative of the plasma surface and
the second term measures Wpp. To illustrate the use of FLXCON, an HEQ-generated
equilibrium for interim design point II (Table 3.2-I) was modeled with TSC using the
same set of 12 PF coils with 6 current groups; the HEQ and TSC results are given
for comparison in Table 3.2-II. The small differences in Ry, a, and k5 between the
HEQ and TSC results are directly attributable to numerical inaccuracies due to finite
grid size in both codes. The multipole decomposition of the PF-coil flux was used to
generate three sets of six PF coils and six current groups labeled DEC, OCT, and HEX
in Table 3.2-II to denote the maximum multipole moment used. As the higher moments
are eliminated, Y |Ipr| decreases as expected, but Wpp is lower only for the HEX case.
The plasma shape, however, drifts from the base shape because the higher moments
were used inefficiently to suppress x and to provide additional triangularity. A more
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of Table 3.2-1 with A =4.5 and A =6.)
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Table 3.2-II.
Equilibrium Calculations with Different Multipole Moments
for Interim Design Point II of Table 3.2-I

HEQ® BASE® DEC® OCT® HEX®

Major radius, R, (m) 6.12 6.12 6.12 6.13 6.13
Minor radius, a (m) 1.36 1.35 1.35 1.34 1.34
Magnetic axis, Ry (m) 6.33 6.35 6.35 6.35 6.34
Elongation

Kx 1.75 1.73 1.68 1.70 1.84

Kos 1.58 1.59 1.55 1.56 1.67
Triangularity

8« 0.74 0.77 0.75 0.68 0.46

bgs 0.48 0.50 0.49 0.47 0.36
Separatrix coordinates (m)

Ry, 5.11 5.12 5.14 5.25 5.51

Zx 2.38 2.39 2.31 2.32 2.53
Toroidal beta, 8 (%) 1.84 1.86 1.94 1.98 1.86
Poloidal beta, 8, 1.85 1.77 1.78 1.78 1.74
Plasma volume (m?) 347 348 337 329 343
Safety factor

q(0) 1.59 1.59 1.54 1.50 1.58

q(a) 7.84 7.02 6.46 6.19 6.52
Current, ¥ |Ipr| (MA) 142 142 114 111 82
Stored energy, Wpr (GJ) 7.57 7.57 7.78 8.10 6.80

(@)PF-coil flux determined by PF-coil currents and locations using HEQ and
TSC (BASE) codes.
()PF-coil flux determined by truncated multipole-expansion series with up to

decapole (DEC), octopole (OCT), and hexapole (HEX) moments.
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efficient method to generate the same plasma shape would require less quadrupole and
more hexapole moments, and will be used in the future.

3.2.2. Free-Boundary MHD Equilibria and Operational Requirements

Given the coil distribution, reference MHD equilibria for ARIES-I are computed using
the HEQ code [4], which calculates free-boundary solutions for a given plasma position,
shape, and linked poloidal flux while minimizing the stored energy. The plasma shape
is chosen to have kx = 1.8 to allow for adequate vertical stabilization (Sec. 3.4) and
84 = 0.7 based on the analysis in Sec. 3.2.1 to minimize the PF-coil stored energy. The
plasma pressure profile is consistent with the transport analysis of Sec. 3.4 (flat density
and narrow temperature profiles), and the current profile is consistent with first-stability
operation with high €3, and with current-drive analysis of the driven current-density
profile. These constraints led to a choice of profiles that are close to the following pressure,
p, and poloidal current-profile, f', functions:

p(z) = po (e—:_wa-_el—a), | (3.2-1)
7@ = mkn(5) (S5 (3.2-2)

where z is the poloidal flux normalized to 1 within the plasma. Values of a = —1.35,

v = —1.35, and B; = 2.29 were chosen for the equilibrium analysis. The toroidal plasma
current density is

ff

J; = Rp
t p+M0R7

(3.2-3)

where R is in the direction of the major radius.

The poloidal-lux distribution of the intermediate ARIES-I equilibrium is given in
Fig. 3.2-2. Profiles of the plasma pressure, toroidal current density, and safety factor are
shown in Fig. 3.2-3. Parameters of this intermediate equilibrium that are relevant to sta-
bility and current-drive analyses are given in Table 3.2-III. The reference ARIES-I equi-
librium of Table 3.1-I is essentially similar to this equilibrium (scaled to R, = 6.75 m).
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Table 3.2-III.
The Interim ARIES-I Divertor MHD Equilibrium(®

Major radius, R, (m) 7.24
Minor radius, a (m) 1.61
External toroidal field at R,, B; (T) 11.9
Plasma current, I, (MA) 11.3
Safety factor on axis, g, 1.24
Average-field safety factor, ¢ 4.45
Safety factor at 95% flux, gys 4.64
Toroidal beta, 8 (%) 1.90
Poloidal beta, 8, 2.19
Elongation at X-point, K 1.80
Elongation at 95% flux, kg5 1.60
Triangularity at x-point, 6 0.70
Triangularity at 95% flux, égs 0.50
x-point location

Ry (m) 6.11

Zy (m) 2.90
Internal inductance, [; 0.82
Stored PF-coil energy, Wpr (GJ) ) 12.0

(2)The reference equilibrium of Table 3.1-I is essentially similar
this equilibrium (scaled to R, = 6.75 m).
®)Stored energy is higher at full I, and low 3.
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Analysis leading to the interim MHD equilibria provided an adjustment to the con-
ditions that relate I, to ¢, a, B;, and the plasma shape parameters. This adjusted
relationship, used in systems studies, is

_ €(1.15 — 0.65¢ 14 &2
o - senUzas (o)

where § is the average-field safety factor using the averaged poloidal field at the plasma
edge. For this class of equilibria, the edge and 95% flux surface quantities are related
through

5
x 1.59 2% = (1.13—0.086)3;1— = 1.09. (3.2-5)

o5 Kos q

Different forms of the profile functions can be used to produce equilibria nearly iden-
tical to this case in all its global parameters, as are given in Table 3.2-III. The results
of the free boundary equilibrium and the PF-coil currents do not change significantly

when these different profile functions are used, as long as the global parameters remain
unchanged.

Since the ARIES-I reactor uses noninductive methods to assist start-up of the plasma
current (Sec. 12), the amount of poloidal flux linkage between the plasma and the PF
coils can be chosen to reduce the PF-coil stored energy. Some flexibility exists near the
condition of minimum stored energy to vary the PF-coil current with a fixed x-point
location: low beta and low linked flux, high beta and low linked flux, and high beta
and high linked flux. The maximum current for each coil is then estimated and used
in sizing its cross sections and locating the coil, as plotted in Fig. 3.2-2 (assuming an
overall current density of 20 MA/m? for each coil). This data is then used as input to
the engineering design of the PF-coil system (Sec. 7).

3.3. MHD-STABILITY BETA LIMIT

3.3.1. Dependences of the Beta Limit

The first stability regime requires that all ideal MHD modes be at least marginally
stable in the absence of a conducting shell beyond the plasma edge [5]. While this
requirement is broad in scope, it is usually adequate to examine only the high-n ballooning
modes and the low-n (n = 1) kink modes to determine the stability beta limit. The
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intermediate-n ballooning modes (the “infernal” modes) are easily avoided by retaining
small gradients in the g profile near the plasma axis.

As an input to design trade-offs involving plasma shaping (profiles, A, and the g
limit), our study places an emphasis on clarifying the dependences of 8 on A, ks, qo,
and gos. We use only the traditionally successful profile functions for the analysis. This
study, therefore, is limited in its scope, since several other parameters (e.g., § and the g
and pressure profiles) also affect the plasma beta limit. However, this study benefits from
an extensive review of the beta limit investigation recently carried out for ITER [6] and
from reviews of the large body of information in the literature. Calculations are carried
out for high-A (4.5 and 6.0) ARIES-I plasmas using the PEST equilibrium and stability
codes 7] to “fill in” data where needed. The combined data base of the stability analysis
covers a range A = 2.6 to 6.0, kg5 = 1.6 to0 3.2, ¢, = 1.0 to 2.0, and go5 < 5.

The pressure and safety-factor profile functions used include those optimized for the
JET plasma [5] and those used in the ITER studies [6] and are given by:

P = Po [(1 —y) + Py (1 —pzy")] , (3.3-1)
9 = gtay +ay”, or (3.3-2)
¢ = 2 (3.3-3)

(1 - ()

Here y is the poloidal flux normalized to 95% of the x-point flux. In the pressure
profile function, beta determines p,, profiles are adjusted through p,, and other vari-
ables are set according to a =1.5, y =2.5, (=3, =12, and p, =0 or 1. For the
safety-factor profile function of Eq. (3.3-2), A =6, v =2, and g, is chosen such that
@os = @o + @1 + g2 = 3.1 (where g; and g, are independent variables). The safety factor
profile function of Eq. (3.3-2) used for the case with A =~ 6, has o = In(q,/qos)/In(1 — (),
¢ =0.7,and p = 2.

The shape of the 95% flux surface is given by
R = R,+acos(+8sinb), (3.3-4)
Z = Kgsasinb, (3.3-5)

where 8’ & 895. The 95% flux surface is used in the stability analysis to avoid the numer-
ical difficulties near the x-point.

The stability data base produced by the PEST code [7] is shown in Fig. 3.3-1 as the
dependence of beta limit on kg5 (for A ~ 6) and as the dependence of Troyon factor [5]



3-14 EQUILIBRIUM, STABILITY, AND TRANSPORT

limit, Ct = BaB;/I, (in % Tm/MA), on A. From this result, one obtains

1--04 (Ii95 — 1)2
(1 — 6)1.5 ’

Cr ~ 2.8 (3.3-6)
which gives C7 ~ 3.5 and @ = 2.06% for the reference plasma parameters in Table 3.2-III.
It is important to note that this approximate scaling has a limited basis and its use should
be limited to the profiles given here and to the range of parameters indicated above. For

A = 3, it has also been shown that this beta limit remains relatively unchanged as long
as [; remains below 0.75.

Additional studies of the beta limit have also been carried out using polynomial pro-
files and with parameters encompassing the reference case: I, ranging from 16 to 8 MA,
gos from 3 to 6, and S, from 1.4 to 3. The value of Cr is 3.1 to 3.2 as long as gg5 is above
3.7. This result is considered conservative relative to the preceding indications. Design

values of Cr = 3.2 (corresponding to 8 = 1.9%) and [; = 0.74 are therefore adopted for
the ARIES-I reactor.

3.3.2. Stability of Reference Equilibrium

To ensure complete self-consistency among MHD equilibrium and stability, current
drive, and transport analysis, the ARIES-I reference equilibrium is found using a simple
pressure function, p(¢) = poyp®, where a = 1.4 and 1 is the normalized poloidal flux. The
equilibrium flux contours and profiles of safety factor and toroidal current density of the
reference equilibrium are similar to those displayed in Figs. 3.2-2 and 3.2-3. As shown in
Sec. 4, this equilibrium can be generated with ~100 MW of absorbed RF heating [mostly
ion-cyclotron range-of-frequency (ICRF) fast-wave current drive]. The pressure profile
also matches that of transport analyses.

Several sequences of equilibria were tested for stability at different aspect ratios and
safety factors. In the range 4.5 < A < 6.0, it was always possible to obtain stability at
Troyon ratios C7 < 3.2. For the interim geometry of Table 3.2-II1, stable equilibria were
found in the range 1.56% < 8 < 2.60% as the axis safety factor varied respectively from
¢o = 1.50 to 1.10. All equilibria were stable to n = co ballooning modes (tested with the
Phillips code [9]) and were stable to n = 1 external kinks (tested with PEST II) with the
conducting wall at infinity. Generally the edge safety factor, g,, was roughly four times

the axis value, and it was found necessary to avoid integer values of g, in order to ensure
kink stability.
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3.4. VERTICAL STABILITY

Vertical stability is an important issue for ARIES-I because of the moderate-to-high
aspect ratio (A > 4.5) and the high separatrix elongation (kx = 1.8). A toroidally con-
tinuous conducting shell is required to retard the growth of an externally excited vertical
instability with a time constant ranging from an Alfvén time (74 ~ 10 ps) without a shell
to the electrical L/R time constant of the shell, 7, /5. The passive stabilization provided
by this shell must be augmented by an active feedback system that provides vertical sta-
bility for times 2 71/r. A rigid-plasma model (PSTAB) [10] and linear (NOVA-W) [11]
and non-linear tokamak-simulation-code (TSC) [3] deformable-plasma models are used
to estimate the conductor location and size required for passive stabilization. Time-

dependent TSC simulations are used to determine the current, voltage, location and size
of the feedback coils.

3.4.1. Passive Stabilization

Without passive stabilization, a vertically displaced plasma will move vertically on an
Alfvén time scale (~10 us). Passive conductors must be positioned around the plasma
to slow this vertical motion sufficiently to allow an active feedback system operating
on a longer time scale (2 100 ms) to control the vertical position of the plasma with a
reasonable expenditure of reactive power (< 10 MVA). Passive stability performance is
measured by the stability parameter that is defined for an idealized system by

T’U

f = 1+ ) (3.4-1)
TL/R

where 7, = 1/7 is the vertical-instability time constant and 7 is the growth rate. A design
constraint of

f > 13, (3.4-2)

is adopted to ensure that a sufficient stability margin exists above the ¥ = oo limit under
all plasma conditions.

Placement of passive (metallic) stabilizer elements close to the plasma cause severe
engineering difficulties: (1) neutron damage and activation, (2) nuclear heating which
requires active cooling, (3) adverse effects of tritium breeding, and (4) difficulties in
assembly/disassembly of components and of maintenance. It is, therefore, desirable to
place the passive elements away from the plasma, preferably behind the blanket (at a
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distance of ~ 0.6a from the plasma surface in ARIES-I). A preliminary analysis of the
maximum allowable distance permitted between the plasma and the passive stabilizer
elements for vertical stability was performed with the PSTAB [10] code. The PSTAB
formulation assumes that the plasma is a massless rigid body simulated by an array of
filamentary current elements. The equations describing a small vertical displacement
in the presence of an array of resistive filamentary conductors simulating the passive
stabilizer are linearized and solved as an eigenvalue problem.

The notation used to describe the location of the passive stabilizer relative to the
plasma is shown in Fig. 3.4-1. The plasma surface is assumed to be given by

Z = aky sind, (3.4-3)
R = R,+ acos(6+ 6y sinb), (3.4-4)
where R, is the major radius, a is the minor radius, kx and 6« are, respectively, the

separatrix elongation and triangularity, and the poloidal angle 6§ varies from 0 to 2.
The passive stabilizer is placed on a surface parallel to the plasma surface.

6 T T T T Y T A T T T
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Figure 3.4-1. The geometry of the plasma and the passive stabilizer (shell).
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A series of calculations were performed for an A = 6 plasma that was considered
during the ARIES-I scoping-phase activities (R, =6 m,a =1 m, kx = 2, §x = 0.5). The
poloidal coverage, p/a, and the normalized radial location, c/a, of a passive outboard
stabilizer were varied and the results are shown in Fig. 3.4-2. It was found that relatively
small passive stabilizers (p/a ~ 0.2) meet the stability constraint, but these conductors
must be located close to the plasma (c/a < 1.1). Placement of the passive stabilizer
behind the blanket (0.9 m away from plasma surface), even with full coverage on the
outboard side, does not provide sufficient stabilization (i.e., f > 1.3).

The cost-optimized ARIES-I design, however, has a lower aspect ratio of A = 4.5.
Vertical stability of A = 4.5 plasmas with passive stabilizer elements positioned behind
the blanket, as shown in Fig. 3.4-3 (0.7 m away from the plasma surface on the inboard
side and 0.9 m on the outboard side) were examined. The stability parameter as a
function of the plasma elongation of such plasmas is shown in Fig. 3.4-4. This analy-
sis indicates that xx < 1.83 is required for a stabilizer located behind the inboard and
outboard blankets.
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Figure 3.4-2. The stability parameter as a function of poloidal coverage of an outboard
stabilizer at various radial locations (c¢/a) (Fig. 3.4-1) for A = 6, kx = 2, and &« = 0.5.
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Figure 3.4-3. The geometry of the plasma and the passive stabilizer for A = 4.5 and
kx = 1.74. A similar geometry was used for the other cases in the x parametric study.
The coil locations used in the active feedback analysis are also indicated.
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Figure 3.4-4. Dependence of the stability parameter on elongation for A = 4.5 and
stabilizer geometry shown in Fig. 3.4-3.
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The accuracy of the PSTAB rigid-plasma model results was then checked by bench-
marking the kK = 1.74 case against the TSC and NOVA-W deformable-plasma models.
The TSC [3] performs time-dependent simulations of resistive free-boundary, axisymmet-
ric plasmas and the associated external conductors and poloidal-field circuits, including
active feedback amplifiers. Consequently, TSC is more costly to use than either PSTAB
or NOVA-W. The plasma force balance in TSC is modified by scaling up the plasma mass
and viscosity to maintain the plasma in force balance, while alleviating the time-scale
disparity between wave and diffusion phenomena. This parameter scaling does not affect
plasma bulk motion that is stable on the ideal-MHD time scale (us), but does affect
the growth rate of vertical instability. To calculate 7,, TSC is set up with the plasma
and passive-stabilizer geometry shown in Fig. 3.4-3. The PF coils are represented with a
multipole series truncated with the even decapole. The simulations begin with a radial
magnetic field applied for 1 ps to produce an initial ~3-mm vertical displacement of the
plasma. The plasma simulation is then continued until the equilibrium effects of the
initial perturbation are damped out and the vertical instability asymptotically relaxes to
a linear growth rate, as reported by inboard and outboard pickup coils. Corroboration
of the value of 7, predicted from the pickup coils was obtained by fitting the vertical
displacement of the magnetic axis, Z;, with the functional form,

Zy(t) = Z,€el™. (3.4-5)

This 7, calculation was made for four values of plasma mass-enhancement factors.
Results (denoted as squares) are shown in Fig. 3.4-5. An analytically derived quadratic
polynomial that yields the behavior of 7 as a function of the plasma mass-enhancement
factor for small values of the mass-enhancement factor was fit to the results and then
extrapolated to a unity mass-enhancement factor to determine the mass independent
value of 7, reported in Table 3.4-1. The accuracy of this extrapolation is demonstrated
by fitting polynomials to the three smallest and three largest mass-enhancement-factor
results displayed in Fig. 3.4-5 and reporting a range for 7, and f in Table 3.4-1.

This calculation was repeated with the NOVA-W code [11], a non-ideal MHD linear-
stability code that was developed to calculate the linear stability of axisymmetric modes
with passive resistive conductors and active feedback included in the vacuum region
surrounding the plasma. The NOVA-W code is a derivative of the NOVA [12] code.
Both codes are non-variational MHD stability codes that solve the stability eigenvalue
problem for the growth rate (eigenvalue). The use of the eigenvalue formulation rather
than the §W formulation to calculate stability permits the inclusion in NOVA-W of non-
ideal effects, such as wall resistivity, that would otherwise destroy the self-adjointness
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Figure 3.4-5. Dependence of the vertical-stability time constant on plasma mass-
enhancement factor as calculated with TSC (squares) for A = 4.5, kx = 1.74, and the
stabilizer geometry shown in Fig. 3.4-3. Also included are quadratic polynomials fitted
to the three largest (solid) and three smallest (dash) mass-enhancement-factor results
and extrapolated to a unity mass-enhancement factor.

Table 3.4-1.
Vertical Stability Benchmark of the Configuration Shown in Fig. 3.4-3

Vertical-Stability

Code Time Constant, 7, (ms) Stability Parameter, f
PSTAB [10] 217 1.88
TSC [3] 175 — 186 1.56 — 1.60

NOVA-W [11] 173 1.55
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property underlying the §W approach. A Green’s function formulation is used to express
the perturbed poloidal flux in the vacuum region in terms of the feedback currents in
the vacuum region and an integral over the boundary surfaces: the plasma/vacuum
interface and the surface of the resistive wall surrounding the plasma. Separate Green’s
equations are obtained for the vacuum region between the plasma and the resistive wall,
and for the region outside the resistive wall. A thin wall approximation is used to
relate the discontinuity in the normal derivative of the poloidal flux across the thin
resistive wall boundary to the time derivative of the flux on the boundary. Combining
the Green’s equations for the different boundary surfaces yields the normal derivative
of the perturbed flux at the boundary in terms of poloidal flux, which in turn is known
as a function of the Fourier modes of the displacement. This approach provides the
correct vacuum boundary condition needed to solve the NOVA eigenvalue equation for
the growth rate and eigenfunction of the instability. An ARIES-I equilibrium produced
with TSC is used as input to the NOVA-W code. Special care must be used for equilibria
(such as those of ARIES-I) where the separatrix is near the plasma surface, because this
condition can adversely affect the accuracy of the mapping to stability coordinates and,
therefore, affect the result. Consequently, equilibria limited by the 95% flux surface and
below are used in the NOVA-W calculation and then the growth rates are extrapolated
to the separatrix. The NOVA-W result for the benchmark case is given in Table 3.4-1.
Agreement between the NOVA-W result and the mean TSC result is good at 4% for T,
and 2% for f, but agreement between the PSTAB result and the mean TSC result is 20%
for 7, and 19% for f. The differences between PSTAB and TSC result in part from rigid-
versus deformable-plasma effects and from differences in the calculation of the stabilizer
inductances. Also, a 20% difference was obtained in the PSTAB and TSC calculations
of 7,/r with a vertically asymmetric current distribution in the stabilizer.

The possibility of placing the passive stabilizer behind the shield and effectively us-
ing the vacuum vessel as the stabilizer element was also considered. To examine the
feasibility of such a move, NOVA-W was used to analyze a 0.01-m-thick aluminum
(n = 2.824 x 1078 Q-m) stabilizer shell located either behind the blanket (inner wall con-
figuration) or behind the shield (outer wall configuration) as shown in Fig. 3.4-6. The
results indicate that the growth time for the axisymmetric mode for the inner wall config-
uration is 330 4+ 5 ms. For the outer wall configuration, the growth time is 44 & 1 ms. In
fact, the outer wall configuration was found to be unacceptably close to the ideal stability
limit, having a stability parameter f < 1.1. Therefore, only the inner vacuum-vessel wall
configuration is effective in stabilizing the axisymmetric mode to a time scale that an
active feedback system can handle with reasonable power levels.
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Figure 3.4-8. The geometry of two possible locations for passive stabilization shells
considered: behind the blanket (inner location) and behind the shield (outer location).
The effect of tungsten divertor plates was included in both cases.

3.4.2. Active Feedback

The active-feedback power requirements were determined from TSC simulations of
the A = 4.5 and k4 = 1.74 case used in the passive stability benchmark described in the
Sec. 3.4.1. A simulation begins with the vertical coordinates of the plasma magnetic axis,
Zzr, maintained in the equatorial plane for 0.1 s. The feedback coils are pre-programmed
to initiate a 50-mm vertical displacement of Zj; at 0.1 s into the simulation and to
maintain that position once attained. As the plasma mass does not affect the voltage

or current of the feedback coils, a large mass-enhancement factor (8,000) was used for
computational expediency.

Simulation results for feedback-coil A (Fig. 3.4-3) are given in Fig. 3.4-7. A gain for
driving the feedback-coil current was selected to yield a common value of G ~ —2.6 for
the dimensionless gain defined as the ratio of the response flux difference produced by

the feedback coils to the flux difference produced by the plasma in the pickup coils. The
~ dimensionless gain must be in the range of —1 to —10 to ensure stability and practicality
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Figure 3.4-7. The vertical position of the magnetic axis and the feedback-coil current
and voltage as functions of time as calculated with TSC for A = 4.5, kx = 1.74, the
stabilizer geometry shown in Fig. 3.4-3, and feedback-coil A in Fig. 3.4-3.
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of the feedback system. A value of G ~ —2.6 rapidly moves the plasma to a 50-mm
displacement with only an ~10-mm overshoot. The gain for driving the feedback-coil
voltage is set at a low value of 1 mV/A to ensure a smooth voltage response. A pickup-
coil location approximately equal to the location of feedback-coil B in Fig. 3.4-3 was
used for feedback-coils A and C. For feedback-coil B, a pickup-coil location corresponding
approximately to the location of feedback-coil A was used to obtain a clear resolution of
the flux difference produced by the plasma.

The maximum reactive power occurs at the maximum vertical displacement of Z»; and
scales with Z},. The reactive power requirements for the three feedback-coil locations
of Fig. 3.4-3 are shown in Fig. 3.4-8 for a common 50-mm displacement of Zj;. The
feedback coils were simulated with a 0.1-m x 0.1-m cross section of room-temperature,
copper alloy with a conductor filling fraction of 0.7. Feedback-coil C is preferable over
the other two coil locations. This coil is positioned just outside of the TF coil and is
easily accessible for maintenance. The ~2 MVA reactive power required to drive this coil
is well within the 26 MW of recirculating power set aside for miscellaneous plant needs
(Sec. 2). Furthermore, a 50-mm displacement could not be tolerated by the divertor and
represents a maximum design constraint.
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Figure 3.4-8. The reactive power as a function of normalized radial location calculated
with TSC for A = 4.5, kx = 1.74, and the geometry shown in Fig. 3.4-3. Simulation
results were scaled to a common 50-mm displacement of Z,,.
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3.5. TRANSPORT ANALYSIS

The 1-1/2-D, time-dependent BALDUR transport code [13] was used to simulate
steady-state core-plasma behavior for the ARIES-I tokamak design and to study the
time evolution of plasma density and temperature from a few keV (i.e., typical of ohmic
discharges) to a steady-state fusion plasma. In addition to the analyses of the approach
to ignition and thermal stability, the BALDUR simulations were used to study fueling
of the ARIES-I plasma, the resultant density and temperature profiles, and helium ash
buildup and exhaust. The parameters of the steady-state ARIES-I plasma were also used
to benchmark the 0-D results of the systems code. Several physics models including an
estimate for synchrotron radiation losses (Sec. 3.5.1) and transport models (Sec. 3.5.2)
were incorporated in BALDUR for ARIES-I transport analyses which are reported in
this section.

In addition to BALDUR simulations, the ARIES-I reference equilibrium with the
simple pressure profile of p(1/) = p,%* (a = 1.4 and 1) is the normalized poloidal flux), was
used to calculate and benchmark the ARIES-I fusion-power performance and operating
point. The 2-D flux contours for this equilibrium were used in the TRAC II code,
which computes a flux-surface-averaged power balance. This study was performed to
ensure complete self-consistency among all plasma physics analyses since the density
and temperature profiles used in this power balance analysis are exactly the same as
those used for the current-drive and stability calculations, and these profiles are roughly
consistent with the BALDUR results (although the 1-D BALDUR transport calculation
cannot be exactly compared to 2-D MHD profiles).

The plasma profiles used include a peaked temperature profile, T.(¢) = T.o¥>T, with
ar = 1.1 and T,, = 44 keV, and a broad density profile, n (%) = n,P*", with a, = 0.3
and n., = 1.85 x 10 m~3. The profile factors, ar and «,, were chosen so that the
profiles are consistent with BALDUR simulations and T, and n., are set so that the
average temperatures and density agree with the systems code results. The alpha density
was set at 10% of the fuel ions, and an additional (nominally oxygen) impurity was added
to raise Z.ss to 1.6. The results of this simulation for the interim ARIES-I design point
are summarized in Table 3.5-1 and are in good agreement with systems code results and
BALDUR simulations for that design point.
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Table 3.5-1.
TRAC II Simulation of Interim ARIES-I Parameters

Major toroidal radius, R, (m) 7.245
Minor radius (95%), a (m) 1.555
Elongation, Ko5 1.60
Triangularity, o5 0.50
Plasma volume (95%) (m?) 523
Shape factor, S 1.33
Approximate first-wall area (m?) 629
Plasma current, I, (MA) 10.6
On-axis toroidal field, B; (T) 11.6
Toroidal beta, 3 (%) 1.9
Troyon coefficient, Cr (% Tm/MA) 3.2
RMS beta, 8* (%) 2.52
Shafranov poloidal beta, 3; 2.4
On-axis safety factor, g, 1.3
Toroidal radius of magnetic axis, R,, (m) 7.481
Self-inductance, L (pH) , 17.3
Plasma pressure (MPA)

Peak, p, 2.97

Volume averaged, p 1.03
Electron temperature (keV)

Peak, T, 44.2

Volume averaged, T, 17.4
Electron density (10%° m™3)

Peak, nc, 1.85

Volume averaged, 7. 1.33
Fuel-ion density (10%° m™3)

Peak, npr, 1.44

Volume averaged, npr 1.04
Effective plasma charge, Z.;; (~1% oxygen) 1.6
Absorbed current-drive power, Pcp (MW) 100
Fusion power, Py (MW) 2,100

Average neutron wall load (MW /m?) 2.7
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3.5.1. Synchrotron Radiation Effects

A unique feature of the ARIES-I reactor is that half of the plasma energy is radiated
in the form of synchrotron radiation. The synchrotron power is high because: (1) the
first-wall material is SiC composite which is poorly reflective, (2) high on-axis magnetic
field, and (3) high electron temperature. A large synchrotron radiation is beneficial
because the heat load to the divertor plates will be reduced. On other hand, a better
core-plasma confinement (conduction and convection) is required.

To determine the synchrotron radiation losses, the overall reflectivity of the first wall
should be calculated. The first wall of ARIES-I comprises an SiC-fiber composite shell
coated with a 2-mm-thick chemical-vapor-deposited SiC layer (Sec. 8). Helium coolant
flows through channels inside the shell. A mixture of Li;ZrO; solid breeder and Be
multiplier in the form of sphere-pac is located behind the first wall. The spectrum
of synchrotron radiation emitted from the plasma peaks at the fifth electron-cyclotron
harmonic (~1.64 THz) and extends all the way to the far infrared regime, but short of the
regions of resonant and relaxation absorption by either He gas or SiC. Dissipation of the
radiated power, therefore, takes place solely as a consequence of the presence of charge
carriers in the SiC molecules due to gamma irradiation or the introduction of elemental
impurities (e.g., Be, B, and Af), which results in a finite electrical conductivity. Data on
the electrical properties of SiC are limited, but millimeter wave measurement on water-
free fused silica, for example, shows a loss tangent value of 1072 at ~400 GHz [14]. The
value of the loss tangent is a sensitive function of both frequency of the radiation and
purity of the material (see also Sec. 4.5.3).

Using a multi-slab model of the first wall and assuming a loss tangent in the range
of 5 x 1073 to 0.1 for SiC composite (corresponding to an equivalent conductivity of 5 to
100 mhos/m), the effective reflectivity of SiC-composite first wall is calculated to be 0.27.
The divertor target plates of ARIES-I are coated with tungsten which has an effective
reflectivity of 0.99. Noting that the divertor-plates cover 20% of the total first-wall area,
the overall first-wall reflectivity, , has been found to be 0.41.

There are many ways to calculate the total synchrotron-power radiated from the
plasma given its density and temperature profiles [15]. The most rigorous approach is to
solve the equation of radiative transfer in an inhomogeneous plasma, taking into account
the emission, re-absorption, reflection from the wall, and transport of the radiation within
the plasma. This problem was already solved by Tamor and the results are embodied
in the SNECTR code [16]. Subsequently, a much simpler and less time-consuming code,
CYTRAN, was developed [17] and satisfactorily benchmarked against SNECTR.
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For ARIES-I applications, where a weakly reflecting wall is required, a calculational
method simpler than using CYTRAN is possible. It involves the local application of the
global model (LAGM) of synchrotron power loss from a homogeneous, cylindrical plasma
at each point inside an inhomogeneous plasma. This so-called LAGM method was first
proposed by Tamor [18] and was found to give total power loss, and associated radial
cooling profiles, in reasonable agreement with those of SNECTR, particularly when the
wall is weakly reflecting (R < 1).

Using Trubnikov’s approach [19] and including the relativistic correction factor, the
local radiated-power density is given by:

Woyme = 4.14 x 10711(1 — R)/2nl/2 T5/2 B¥/? (1 — B)*/*

_ _ T. 18a k1/2 1/2
« a~1?2 g—1/4 (1—}- 204) (1 + W) ' (3.5-1)

where SI units are used except for the electron temperature, T., which is in keV. Also,
n. is the electron density, B; is the magnetic field strength, 3 is the plasma beta, & is the
plasma elongation, R, is the major radius, and a is the minor radius. The expression in
Eq. (3.5-1) can be integrated over the plasma density and temperature profiles to obtain
the total synchrotron-power loss, Pyyy.-

To check the accuracy of the LAGM calculation of the Wy, profile, the reference
ARIES-I parameters of Table 3.1-I were used for benchmarking against the results of
CYTRAN. Shown in Fig. 3.5-1 are the radiated-power density profiles as a function of
normalized plasma radius, calculated by LAGM using Eq. (3.5-1) and by CYTRAN. The
corresponding total radiated powers, P, are 303 MW and 266 MW for, respectively,
LAGM and CYTRAN, which compare reasonably well with the value of 221 MW cal-
culated from the systems code. It is noted from Fig. 3.5-1 that the two profiles have
very similar radial dependence, except for the difference in their local magnitudes that
accounts for the 14% difference in P,yn.. At R = 0.41, Wyyn. from CYTRAN shows a
small negative value near the plasma periphery, implying net synchrotron heating due to
reabsorption of the wall-reflected synchrotron power. This effect, of course, is not taken
into account by the LAGM calculations.

It should be pointed out here that Wiy, , as calculated from Eq. (3.5-2), scales as
nl/2 T5/% B5/2 and, therefore, is strongly sensitive to the electron temperature profile and
the magnetic field. In addition, since P,y,. and the alpha heating power have the same
order of magnitude in ARIES-I, an accurate evaluation of the W, profile and P, is
essential in determining the self-consistent n. and T, profiles, and the plasma thermal
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Figure 3.5-1. Radial profiles of synchrotron radiated-power density calculated by
LAGM using Eq. (3.5-1) and by CYTRAN, for the reference ARIES-I parameters.

equilibrium point. For this reason, the LAGM calculation of W, in conjunction with
Eq. (3.5-1) is incorporated into the 1-D BALDUR transport code, which will be discussed
in the following sections.

3.5.2. The ARIES-I Transport Model

The transport model that was implemented in the BALDUR transport code was
adapted from Houlberg’s plasma modeling work on the compact ignition torus [20]. This
model is purely empirical and is designed to reproduce the global empirical scalings of
energy and particle confinement time. In addition to global agreement with empirical
scalings, this model has been used successfully at the Princeton Plasma Physics Lab-
oratory to predict the density and temperature profiles in certain pellet-fueled TFTR
discharges [21]. Houlberg has also been successful in predicting plasma density and tem-
perature behavior on JET discharges using this transport model in the WHIST transport
code [20].

The Houlberg transport model is based on the following assumptions: (1) The radial
ion and electron thermal diffusivities are equal. (2) The radial particle-diffusion coef-
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ficient, D, is equal to 1/2 the radial thermal diffusivity, x.. (3) The edge thermal
diffusivity is five times that at the center. (4) There exists an anomalous inward particle

pinch for ions and electrons proportional to the particle diffusion coefficient. The radial
thermal diffusivity, x.(r), is defined as

a? 472 2K2
= — — 5-2
XL pr (1+a2)(1+n2) Cn, (3.5-2)

where a is the plasma minor radius, s is the plasma vertical elongation, r is the radial
plasma coordinate, Cy is a normalizing factor equal to 0.218, and 7g is the global dif-
fusive energy-confinement time. For ARIES-I simulations, 75 is assumed to scale as the
empirical Riedel-Kaye energy-confinement time [22],

TER-K = 0.03 fH a—0.27 Rtl).64 I;'Ol B?'()? n—0.04 P—O.54 n0.59 A?S , (35_3)

where fg is the confinement enhancement factor over the so-called L-mode, R, is the
major toroidal radius, I, is the plasma current, n is the electron density, and P is the
net plasma-heating power (assumed to be equal to total plasma-heating power minus the
radiation losses). In Eq. (3.5-3), SI units are used except for I, in MA, n in 10'° m~?, and

P in MW. The confinement enhancement factor, f = 2.8, was used in the BALDUR
simulations.

The anomalous inward particle pinch has been introduced by Stotler as a refinement
on Houlberg’s transport model to give improved agreement between BALDUR simu-

lations and TFTR discharges in terms of density profiles. This inward pinch is given
as [21]

2D_|_7‘

Vi inch —
p az

(3.5-4)

For the ARIES-I simulation work, 3/4 of this pinch is included in the transport model.
This choice was based on the fact that the difference between including the full pinch
and 3/4 of the pinch was less than the scatter in the empirical data base on which the
transport model had been benchmarked. Therefore, there was some freedom in choosing

the exact multiplying factor for the inward pinch and the lower value of the inward pinch
was used.

In the simulation of the ARIES-I plasma, the MHD equilibrium was determined by
solving the Grad-Shafranov equation in two dimensions. The 2-D grid used to solve this
differential equation was established by specifying a fixed boundary for the poloidal flux
using the technique of harmonic moments [23]. The Grad-Shafranov equation was solved
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every five seconds during the simulation using the evolving pressure and current-density

profiles. As a result, the simulation involved a coupled evolution of 1-D radial transport
and 2-D MHD equilibrium.

A high-n ballooning-mode transport model was included in the simulation to maintain
the pressure gradient at or below the critical limit for the onset of ballooning modes. The
transport model for ballooning modes is in the form of an enhancement factor, f,, on

the local x, equal to [23]
P \1”
fx = [1 + A (p, )] , (3.5-5)
crit

where p’ is the local pressure gradient, pl.;, is the pressure gradient limit for high-n
ballooning modes, and values of A =1 and B = 10 were used. The result of including
this enhancement in x is the local flattening of the temperature profile in regions where
p' > pl.;;- In the ARIES-I plasma simulation, the effect of including this enhancement
factor on global confinement time and the average temperature is found to be small. This
result also confirms that the ARIES-I plasma is stable against high-n ballooning modes
in the bulk of the plasma.

3.5.3. Transport Simulation Results

The transport models described in Secs. 3.5.1 and 3.5.2 were incorporated into the
BALDUR code. The evolution of the ARIES-I plasma was simulated by starting with an
ohmic-like plasma with a temperature of 5 keV on axis (typical of plasmas in ohmic equi-
librium [24]) and continuing to steady-state, fusion-burn conditions. For ARIES-I simu-
lations, it was assumed that the density and temperature profiles have pedestal boundary
conditions such that at steady state Te(a) = T;(a) = 0.30 keV and n(a) = 1.0 x 10?° m™3
where T.(a) and T;(a) are, respectively, the separatrix electron and ion temperatures, and
ne(a) is the separatrix electron density.

)

The fast-wave current-drive system was used to heat the ARIES-I plasma to ignition.
It was assumed that the auxiliary heating associated with the fast-wave current drive
has a parabolic profile (consistent with the current-drive calculations of fast-wave power
absorption in the plasma). The 96.7 MW of auxiliary heating is divided so that 93% of
the power is delivered to electrons and 7% to the ions. The available current drive was
found to be more than adequate for heating the ARIES-I plasma to ignition. Typically,
the ARIES-I plasma achieved ignition in about 5 s and steady state in approximately
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20 s of plasma simulation time; it maintained a steady burn for the remaining 20 s of the
simulation.

The reference fueling scenario for the ARIES-I plasma includes the injection of 2-mm-
radius pellets made of a 50:50 deuterium-tritium (DT) mixture at a frequency of 3 Hz.
The pellets are injected at the mid-plane. In general, it was found that for the range of
pellet size and speed considered, pellets would ablate in the outer 1/3 to 1/2 of the plasma
radius (corresponding to pellet speeds of 5 and 20 km/s, respectively). In the simulations,
the pellet fuel ions were transported towards the center by the anomalous inward particle
pinch. The density profile was found to be very broad and, without an anomalous pinch
term, the density profile would have been even flatter. On the other hand, the ARIES-I
plasma was found to be very stable (thermal and MHD) to perturbations in the density
profile. For example, Fig. 3.5-2 shows the evolution of temperature and density profiles
of the ARIES-I plasma fueled with large size (4-mm radius) pellets injected every eight
seconds. In this simulation, the density and temperature profiles were recovered in about
2 s after each pellet injection.

The transport simulation of the ARIES-I plasma gives a *He particle-confinement
time of approximately 7.76 s. The *He ash buildup in steady state is 8.6%. This particle
confinement is very sensitive to the value of the particle diffusion coefficient and to the
inward pinch that is assumed in the simulation. It should be noted, however, that the
assumption of D; = 0.5x) and Vpinen = —1.5 D r/a? results in plasma-core 7p /75 values
that are in the empirical range for present-day tokamak experiments.

The steady-state plasma-parameter values from the BALDUR simulations are com-
pared to 0-D prediction of the systems code in Table 3.5-II. Good agreement between the
0- and 1-D values for the ARIES-I plasma parameters were found. The plasma pressure
and density profiles are found to scale roughly as

pr) = po [1 - (-’;)T , (3.5-6)

Qn

n(r) = n(a)+mn, [1—(2)2] , (3.5-7)

with o, ~ 1.4 and a, >~ 0.3. These profiles were used in other plasma analyses. The
electron and ion temperature profiles however are not similar, the electron temperature
being flatter than that of the ions. This difference in the temperature profiles is attributed
to the flattening of the electron temperature profile due to a more accurate synchrotron-
radiation model in the simulation (Sec. 3.5.1).
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Figure 3.5-2. Time evolution of the ion (A) temperature and (B) density profiles.



3.5. TRANSPORT ANALYSIS

Table 3.5-I1.

Comparison of BALDUR Simulation Results with 0-D Predictions
for ARIES-I Plasma Parameters

3-35

Plasma Parameters

Current-drive power (MW)

Alpha power (MW)

Energy confinement time (s)
Confinement enhancement factor, fi Ricdel—Kaye
Particle confinement time (s)

Average electron density (10%° m—2)
Average ion density (10%° m~3)
Average electron temperature(®) (keV)
Average ion temperature(®) (keV)
Toroidal beta (%)

Effective plasma charge, Z.sy
Core-plasma radiation fraction, f,qq

“He ash concentration (%)

BALDUR 0-D Simulations

97.
375.
2.49
2.80
7.76
1.39
1.20
18.3
20.7
2.00
1.73
0.48
8.58

97.
385.
2.53
2.52
9.39
1.45
1.24
19.3
20.0
1.90
1.65
0.49
10.0

(®)Density weighted.
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3.5.3.1. Summary

The 1-D transport simulations using an empirically benchmarked tokamak plasma-
transport model has confirmed that the ARIES-I plasma achieves ignition using the
available current-drive power and achieves steady-state burn as long as the 7z enhance-
ment factor of 2.8 can be attained. Judging from the improvements in the empirical g
values achieved in tokamaks in the last 10 years, this level of confinement appears to be
a reasonable extrapolation. The 1-D simulation results are in good agreement with 0-D
predictions. Fueling remains an issue because pellets with reasonable sizes and speeds
oblate in the outer parts of the plasma, and an anomalous inward pinch appears to be
necessary to transport the fuel ions towards the plasma center.

The simulations also show that the Houlberg plasma-transport model not only pre-
dicts the plasma density and temperature profiles of certain TFTR and JET discharges
accurately, but can also be extrapolated to power reactor conditions. It is important to
note that while Houlberg’s plasma-transport model predicts the density profiles used in
the ARIES-I plasma analyses (c, = 0.3), there exist other transport models (e.g., the
theoretical transport model of Singer [25]) that predict even flatter density profiles for
ARIES-I parameters. Future work in this area will involve a comparison between the
models of Houlberg and Singer to decide which is more relevant to reactor-grade plasmas

(comparison between Singer’s model predictions and empirical results has been confined
to ASDEX discharges).

3.6. SUMMARY AND CONCLUSIONS

The ARIES-I design is a conceptual commercial reactor based on modest extrapo-
lation from the present tokamak physics data base. The ARIES-I design operates at a
relatively high plasma aspect ratio (A = 4.5), a low plasma current (I, = 10.2 MA), and
a high on-axis magnetic field (B, = 11.3 T). As a result, the poloidal beta is high and a
high bootstrap-current fraction of 0.68 is predicted. Because of the low plasma current
and high bootstrap-current fraction, only 3.3 MA of current should be driven by exter-
nal means; therefore a steady-state reactor with relatively small current-drive power is
possible. Systems-code analysis confirms that an optimum first-stability tokamak reactor
operates with high aspect ratio, low current, and high bootstrap-current fraction. The
key parameters of the ARIES-I reactor are listed in Table 3.1-1.

The ARIES-I MHD equilibrium, beta limit, vertical stability, and the plasma trans-
port analyses have been described in this section. Generally only modest extrapolation
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from the near-term physics data base is required. Some particular results of these studies
indicate that:

o Diverted plasma with low elongation (1.8) can be created with relatively far-
removed PF coils.

o Design iterations have led to a minimum stored-energy PF-coil set.

o A value for the Troyon beta coefficient of 3.2 is sufficient for first stability operation.

o Passive stabilization of short time-scale axisymmetric instabilities (<100 ms) is
possible with the passive stabilizer elements located behind the blanket (~ 0.6a
away from the plasma surface).

o Active stabilization of longer time-scale axisymmetric instabilities is possible with
modest power demands (several MVAs).

o The first wall is weakly reflecting, which results in large synchrotron-radiation
losses. This mode of operation reduces the divertor heat load.

¢ Energy-confinement enhancement factors of 2.5 to 3 times L-mode scaling (depend-
ing on the scaling model used) are needed to maintain the plasma power balance.
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