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ARIES Program Participants 

Systems code:    UC San Diego, PPPL 

Plasma Physics:  PPPL , GA, LLNL  

Fusion Core Design & Analysis:  UC San Diego, FNT Consulting 

Nuclear Analysis:  UW-Madison 

Plasma Facing Components (Design & Analysis): UC San Diego, UW-
Madison 

Plasma Facing Components (experiments):  Georgia Tech 

Design Integration:  UC San Diego, Boeing 

Safety:  INEL 

Contact to Material Community: ORNL 



Goals of ARIES ACT Study 

 Over a decade since last tokamak study : ARIES-1 (1990) 
through ARIES-AT(2000). 
• Substantial progress in understanding in many areas. 
• New issues have emerged:  e.g., edge plasma physics, PMI, 

PFCs, and off-normal events. 
o What would be the maximum fluxes that can be handled by in-

vessel components in a power plant? 
o What level of off-normal events are acceptable in a commercial 

power plant? 

 Evolving needs in the ITER and FNSF/Demo era: 
• Risk/benefit analysis among extrapolation and attractiveness. 
• Detailed component designs is necessary to understand R&D 

requirements.  

 



Frame the “parameter space for 
attractive power plants” by considering 
the “four corners” of parameter space 
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Status of the ARIES ACT Study 

 Project Goals: 
• Detailed design of advanced physics, SiC blanket ACT-1 

(ARIES-AT update). 
• Detailed design of ACT-2 (conservative physics, DCLL 

blanket). 
• System-level definitions for ACT-3 & ACT-4. 

 ACT-1 research is completed. 
• First design iteration was completed for a 5.5 m Device. 
• Updated design point at R = 6.25 m (detailed design on-going) 
• Final report to be published as a special issue of Fusion Science 

& Technology 

 ACT-2 Research will be completed by December 2013. 
 



ARIES-ACT1 (ARIES-AT update) 

 Advance tokamak mode 
 Blanket: SiC structure & LiPb Coolant/breeder 

(to achieve a high efficiency) 



ARIES Systems Code – a new 
approach to finding operating points 

 Systems codes find a single 
operating point through a 
minimization of a figure of 
merit with certain constraints  
• Very difficult to see sensitivity 

to assumptions.  
 Our new approach to systems 

analysis is based on surveying 
the design space and finding a 
large number of viable 
operating points. 

 A GUI is developed to 
visualize the data.  It can 
impose additional constraints 
to explore sensitivities 

Example: Data base of operating points with 
fbs ≤ 0.90, 0.85 ≤ fGW ≤ 1.0, H98 ≤ 1.75 



Impact of the Divertor Heat load 

 Divertor design can handle > 10 MW/m2 
peak load. 

 UEDGE simulations (LLNL) showed  
detached divertor solution to reach high 
radiated powers in the divertor slot and 
a low peak heat flux on the divertor 
(~5MW/m2 peak). 
• Leads to ARIES-AT-size device at 

R=5.5m. 
• Control & sustaining a detached divertor? 

 Using Fundamenski SOL estimates and 
90% radiation in SOL+divertor leads to 
a 6.25-m device with only 4 mills cost 
penalty (current reference point). 
• Device size is set by the divertor heat flux 

 



The new systems approach 
underlines robustness of the design 
point to physics achievements 
Major radius (m) 6.25 6.25 

Aspect ratio 4 4 

Toroidal field on axis (T) 6 7 

Peak field on the coil (T) 11.8 12.9 

Normalized beta* 5.75% 4.75% 

Plasma current (MA) 10.9 10.9 

H98 1.65 1.58 

Fusion power (MW) 1813 1817 

Auxiliary power 160 169 

Average n wall load (MW/m2) 2.5 2.3 

Peak divertor heat flux (MW/m2) 13.5 11.0 

Cost of Electricity (mills/kWh) 67 68.9 

* Includes fast α contribution of ~ 1% 



The new systems approach 
underlines robustness of the design 
point to physics achievements 
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Aspect ratio 4 4 

Toroidal field on axis (T) 6 7 

Peak field on the coil (T) 11.8 12.9 

Normalized beta* 5.75% 4.75% 
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Cost of Electricity (mills/kWh) 67 69 

* Includes fast α contribution of ~ 1% 



Detailed Physics analysis has been 
performed using the latest tools 

New physics modeling 
• Energy transport assessment: what is 

required and model predictions 
• Pedestal treatment 
• Time-dependent free boundary 

simulations of formation and 
operating point 

• Edge plasma simulation (consistent 
divertor/edge, detachment, etc) 

• Divertor/FW heat loading from 
experimental tokamaks for transient 
and off-normal* 

• Disruption simulations* 
• Fast particle MHD 

 
* Discussed in the paper by M. Tillack, C. Kessel 



Overview of engineering design:  
1. High-hest flux components* 

 Design of first wall and divertor options 
• High-performance He-cooled W-alloy 

divertor, external transition to steel 
• Robust FW concept (embedded W pins) 

 Analysis of first wall and divertor 
options 
• Birth-to-death modeling 
• Yield, creep, fracture mechanics 
• Failure modes 

 Helium heat transfer experiments 

 ELM and disruption loading responses 
• Thermal, mechanical, EM & 

ferromagnetic 

 
* Discussed in paper by M. Tillack and J. Blanchard,  



Overview of engineering design*:  
2. Fusion Core 

 Features similar to ARIES-AT 
• PbLi self-cooled SiC/SiC breeding 

blanket with simple double-pipe 
construction  

• Brayton cycle with η~58% 

 Many new features and improvements 
• He-cooled ferritic steel structural 

ring/shield 
• Detailed flow paths and manifolding for  

PbLi to reduce 3D MHD effects* 
• Elimination of water from the vacuum 

vessel, separation of vessel and shield 
• Identification of new material for the 

vacuum vessel 
 

 *  Discussed in the paper by M. Tillack, this session 



Detailed safety analysis has highlighted 
impact of tritium absorption and transport 

 Detailed safety modeling of ARIES-AT (Petti et al) and 
ARIES-CS (Merrill et al, FS&T, 54, 2008 ) have shown a 
paradigm shift in safety issues: 
• Use of low-activation material and care design has limited 

temperature excursions and mobilization of radioactivity 
during accidents. Rather off-site dose is dominated by 
tritium. 

• For ARIES-CS worst-case accident, tritium release dose is 
8.5 mSv (no-evacuation limit is 10 mSV) 

 Major implications for material and component R&D: 
• Need to minimize tritium inventory (control of breeding, 

absorption and inventory in different material)  
• Design implications: material choices, in-vessel 

components, vacuum vessel, etc. 

 



Revisiting ARIES-AT vacuum vessel 

 AREIS-AT had a thick vacuum vessel  (40 cm 
thick) with WC and water to help in shielding. 
(adoption of ITER vacuum vessel). 
• Expensive and massive vacuum vessel. 
• ITER Components are “hung” from the vacuum vessel.  

ARIES sectors are self supporting (different loads). 

 ARIES-AT vacuum vessel operated at 50oC   
• material? 
• Tritium absorption? 
• Tritium transfer to water? 

 Vacuum vessel temperature exceeded 100oC 
during an accident after a few hours (steam!) 



New Vacuum Vessel Design 

 Contains no water 
• Can run at high temperature: 300-

500oC.  (350 oC operating 
temperature to minimize tritium 
inventory) 

 Cooled by He flowing between ribs. 
• Tritium diffused through the inner 

wall is recovered from He coolant 
(Tritium diffusion to the cryostat 
and/or building should be much 
smaller.  

 Made of low-activation 3Cr-3WV 
baintic steel (no need for post-weld 
heat treatment). 



In summary … 

 ARIES-ACT study is re-examining the tokamak power plant 
space to understand risk and trade-offs of higher physics and 
engineering performance with special emphais on PMI/PFC 
and off-normal events. 
• ARIES-ACT1 (updated ARIES-AT) is near completion. 
• Detailed physics analysis with modern computational tools are 

used.  Many new physics issues are included. 
• The new system approach indicate a robust design window for this 

class of power plants. 
• Many engineering imporvements: He-cooled ferritic steel structural 

ring/shield, Detailed flow paths and manifolding to reduce 3D MHD 
effects, Identification of new material for the vacuum vessel … 

• In-elastic analysis of component  including Birth-to-death modeling 
and fracture mechanics indicate a higher performance PFCs are 
possible.  Many issues/properties for material development & 
optimization are identified. 
 



Thank you! 
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