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Qutline

® FFHR-da
- concept and specifications
® DPE (Direct Profile Extrapolation) method
- basic equations
® Detailed physics analysis
- FFHR-d1 is a semi-optimal Heliotron
- new reference profiles
® FFHR-ci.0and ca.1
- global parameters in FFHR-c1

® Summary

J. Miyazawa, “Core Plasma Design for FFHR-d1 and c1”, Japan-US WS on Fusion Power Plants Related Advanced Technologies

(Kyoto Univ., 26-28 Feb. 2013) 2/22



Helical DEMO reactor FFHR-d2

e Conceptual design study of FFHR-d1

has been started in 2010
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® The newest version of the FFHR series

(FFHR2, FFHR2, FFHR2m1, FFHR2m2)
v Heliotron type steady-state reactor

v Self-ignition (no auxiliary heating)

v 3 GW of fusion output

v 1.5 MW/m? of neutron wall load

What's new in FFHR-d1

v Coil arrangement is similar to LHD

v Based on LHD normal confinement
v R =15.6 m(LHD x4), B, =4.7T

v 6 poloidal coils in LHD are reduced to 4
in FFHR-d1, to secure large ports for
maintenance

v Divertors are placed on the backside of
blankets

Vertical slices of FFHR-d1 (by T. Goto)
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Direct Profile Extrapolation (DPE)
J. Miyazawa et al., Fusion Eng. Des. 8642879 (2011)

v Extrapolation without assumed profiles

v Directly extrapolates the profile data to reactor
v

v

MHD equilibrium similar to the experiment is used
Gyro-Bohm normalized pressure profile is fixed

pGB-BFM(p) = OLo ne(p)0'6 po-4 BO'S JO(2.4p/OLl)

v Enhancement factors of beta and density
are determined to achieve self-ignition

v The heating profile effect is also

taken into account

Reactor
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closed:
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The confinement
enhancement factor is
expressed as a function
of the heating profile

J. Miyazawa et al., Nucl. Fusion 52 (2012) 123007.
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Two typical profiles have been chosen

Erpapitonfom LD 1= S50e ) SHp . ¥ One from the standard
50 5 st 509 T Rioay =14 csctr e
R S configuration of R, = 3.60
- = m, Y. = 1.2
®) _ ® _ 1 Ye 5
= = v’ Another from the high
“ g © aspect ratio configuration
e T
(@) - g Reac;‘" (Cl— g_pe norm Reactor YD;-E=14- Of Rax =~ 360 m’ YC =1.20
;-. 1 B 'M;Wﬁ%?w;;&g, ] _;;, - / 0 ) .
N . The high-aspect ratio
“g g configuration is effective
= =S
for Shafranov shift
M - M - N .
s e mitigation

o v.=(ma.)/ (IR, is the pitch of helical
coils, wherem=10,l=2,a.~0.9-1.0
m, and R.=3.9min LHD
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Detailed physics analyses are
being carried out

FFHR-d1 Device Parameters
MHD Equilibrium and Stability

Neoclassical Transport

* devicesize R, =15.6m

* magq. field B.=4.7T
J c - HINT2

* VMEC
* TERPSICHORE

» fusion output Py ~3GW

a Particle Transport
nomailous
Transport

- GSRAKE/DGN
- DCOM
- FORTEC-3D

* radial profiles given by DPE

v’ Detailed physics analyses on MHD, neoclassical transport,
and alpha particle transport using profiles given by the DPE
method have been started
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MHD Equilibrium [HINT?2]

R, =144 m _ Ru=14.4m
E E

“Vacuum” “Vacuum”
Ryc= 14.4m _ Ry=14.4m
“w/o B,” “w/o B,”
Rax=14.0m _ Ry=14.0m
113 W/ BV,7 N 113 W/ BV,7 N

Shafranov shift can be mitigated and destructed magnetic surfaces are reformed by plasma position

control using vertical magnetic field

ByY. Suzuki

L —‘ )
of
-1 ,:_-‘-"..__f’ )

connection length [m]

s

Especially, magnetic surfaces similar to those in vacuum are formed with finite beta in the high aspect

ratio configuration
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Neoclassical Transport [FORTEC3D]

Case A
4 I and
Case B

"case D By S. Satake

case A, w/o Bv

<) 3 i
=
)
~ case A, w/B
(0p] 2 v
3

S
@4

1 -
case B, w/ BV -4

0 02 04 06 08 1
p
Neoclassical heat flow in various cases =~ Comparison with P_in Case B w/ B,

v' Large neoclassical transport is expected in the case A w/o B,
v" Plasma position control with B, is effective and the heat flux is halved

v Neoclassical heat flux in the Case B with B, is smaller than the alpha heating
power minus the radiation loss of ~ 400 MW at p > 0.6
=» Both high aspect ratio config. and plasma position control are effective
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Alpha Particle Confinement [GNET]

By Y. Masaoka and S. Murakami (Kyoto Univ.)
v'Heat deposition profile is peaked
Case A w/ B, (Pyep/Pgeps)avg ~ 0-65

(B, effect is unclear)
Case B W/ B,: (Pyep/Pgeps)avg ~ 051

2 -

MW / m*

v’ Significant loss of alpha particle due

0 ]
0 02 04 06 08 1

to the large Shafranov shit s
Energy loss ratio: 2

CaseAw/B,: 41% => CaseBw/B:11% 1}

Particle loss ratio: A
CaseAw/B,:69% > CaseBw/B:20% ¥ | \\

Note: Reentering alpha is not considered  deposition S\

. ]
0O 02 04 06 08 1
p
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3D Tracking of Alpha Particles [MORH]

. . . . By R. Seki
v Three dimensional orbit tracing by MORH Ret. #3 Y
5 ofla . . 1 —_—
using MHD equilibriums given by HINT2 P N
———— P 100 S o8t 4
- EO = 35 Mev BN “\ 1 Ry =144m ¢ | — - % I
; : [/[2:'—/% '-._‘:' Vacuum  ~ .aoo E 06l
-p=0.1-0.9 \W /A -5 PE :
74 Ry=144m £ | w: [ O 04}
-b=0°-18° T R o as% S 31
(I) O 18 Rim] ‘ 2 ps g 'ﬂé 02
-pitch angle = (1—19) w/20 R i ¢ N |
0 0.2 04 06 0.8 1

-w/o CXloss

-Vacuum vessel or blanket is used as the loss boundary
(no significant difference is recognized) L

Ref. #7

wi/ BV, blanket

[ wio Bv, blanket

v Plasma position control is effective s
v Reentering effect is also effective £ | |
v Direct loss of alpha particles e \

generated atp <o.7islessthan20% °——F———

0 02 04 06 038 1
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Lost Alpha Particles Hit the Divertor
[MORH] By R. Seki andT. Goto

‘e 4 |
6 10 14R (m)18 22 26 6 10 14R (m)18 22 26 26
v Lost a particles go to the
divertor region

v" Negligibly small number of
a particles starting from p AV/ 5 _
= 0.95 hit the blanket N
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Case A IHD
equilibrium
Shafranov shift

Both NC and a confinement are bad in the
Case A, due to the large Shafranov shift.

R,x=3.60m

istoo large

Both NC and a confinement
e . are good in the Case B where
equilibrium o heating Shafranov shift is mitigated.
i preilz However, a heating profile is
L  hollow (not consistent with
the assumption for yppe).

R,x=3.60m

is mitigated by
applying B,

A new profile "Case C" has
Case C HD @ heating been chosen.
R =3.55m equilibrium profile Peaked density profile as the
2 Case A.

High-aspect ratio as the Case B
but more inward-shifted.

Case C'

R,x=3.55m

MHD a heating a heating
equilibrium ' profile efficiency

? ?

— u —> =

In the Case C’, a heating efficiency, n, = 0.85 is assumed (1, = 1.0 in Cases A, B, and C).
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Profiles in the three Cases

case C: Y. =1.20

Extrapolation from LHD (#96164,t = 6.966 s) Extrapolation from LHD (#109602,t = 3.74 s) Extrapolation from LHD (#115787, t = 3.90 s)
50 to FFHR-d1 (B =509T R__ ~=14.4m) 50 to FFHR-d1 (B =509T, R __ ~=14.4m) to FFHR-d1 (Bmu =516 T, Rmm =14.2m)
(@) — aofh f =2.65] (a) «— aoln f =12.0] 50 — T r T T
! € Reactor e ! € Reactor n a) o~ L N f =12.3]
£ 30 [ . £ ( ) / 40 € Reactor n
2, 20f = K E
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@ @
= SE ,—fr x %
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0 T : e
(C) —_ 10 F B Reactor (C) —
2 n-.""' ;9'
5 (C) . 10F B Reactor B T
0 et 5 =t ‘:q-.h-'\-.
(d) 2L p Reactor Y 1.29 1 (d) 5 - ‘.ﬁf-n' * LHD o'.i..'." .
— e_nhorm DPE — ) e
3 B e 3 0 I
o Vi 0 T
0 |t : ; : . =)
(e) _ P -Pg (e) _ s
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0 } t — t t o
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(a)

(b)

(c)

(d)

(€)

(f)

to FFHR-d1 (B

Profiles in the Cases C and C’

Extrapolation from LHD (#115787, t = 3.90 s)
=518T,R =14.2m)
reactor reactor

(%) (keV) (10" m?)

{a.u.)

€ Reactor

Reactor

f =12.3]
n

(MW)

{a.u.)

PP ) ]
dep  depd avgexp

dep delp1 \ = 0;525
-1 0.5 0.5 1

(a)

(b)

(c)

(d)

(e)

(f)

Extrapolation from LHD (#115787, t= 3.90 s)
to FFHR-d1 (B =516T,R
reactor reactor

14.4m, BL ~

MHD equilibrium is ready

7.5 %, “w/o B,”

=142 m)

(10" m?)

(keV)

f =14.7]
n

(%)

{a.u.)

(MW)

{a.u.)

PP

_Bad

dep dept avoexp
= 0.5285]
L L
0.5 1

7.6 %, “w/ B”

9.1 %, “w/B,"
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The basic concept of a helical
experiment reactor FFHR-ca

v FFHR-ca is a small copy of FFHR-d1 ("c” means “before d”
and “compact”)

Objectives of FFHR-ca:
1. "Q > 5" (c1.0) or "Q = o0" (c1.2)

Q =Pfision | Pax =5 P/ P
2. More than 200 MW of P, .. .-

auX

3. Safe and steady-state operation for one year

4. Tritium self-sufficiency (local TBR > 1.3)

5. Neutron irradiation test of large components

J. Miyazawa, “Core Plasma Design for FFHR-d1 and c1”, FFHR-d1}F5% 5t & RF XU & & (1 Feb. 2013) 16/22



2 types of FFHR-ca (conservative (c1.0) or challenging (c2.1))

FFHR-c1.0 FFHR-c1.1 FFHR-d1

= =

R

15.6m

c 3.9m 13.0 m & .
helical coil major radius (20/3 times LHD) (4 times LHD)
-~ 3
VP ~30 m3 ~1,000m €« ~2,000 M3
plasma volume (similar to ITER)
B, . 4.0T 53T LT
magnetic field strength 2.5 (similar to ITER) Nb3Sn /Nb3Al/HTS
at the helical coil center NbTiTa (He Il) / HTS Nb3Sn/Nb3Al/HTS
Wi 1.6GJ 67 GJ 113 G 160 G)
stored magnetic energy (at4T)
anX 25 MW 3 P 50 MW -1 hour
auxiliary heating power (short pulse) : . (for start-up)
o — ? P ~3GW
fusion power : : (Q =)
Tduration ~1 hour ? ? ~1year
duration time of a shot
D, — ? ? ~15 dpa
dpa per shot - - (1.5 MW/m? x 1 year)
large HC winding
Issues bbexp. 7 7 nuclear heating on SC
lifetime of SC/insulator
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Effect of central heating on ypp¢-

- The confinement enhancement factor is proportional to the 0.6 power of the
heating profile peaking factor: Caux = 1.0

PP

—t—t—T—T—t—T—T—]—T—T—T—T
) =0.655
dep dep1”avg,reactor

0.6

YoPe = ((Pdep/Pdep1)avg,reactor) / (PdeplPdep1)avg,exp)
= (0.65 / (I:’depll:,dep1)avg)o'6

- The heating profile peaking factor with the central pARSTSSEE S
auxiliary heating can be larger than 0.65 :

dep dep1”avg,reactor

- Assume that the auxiliary heating is focused on the

center and expressed by the delta function, i.e., Cax=70
! P.IP ) =0.950

dep dep1”avg,reactor

(Pdep/Pdepl)avg,reactor = 065 (1/Caux) +(1'0 o 1/Caux)

=1.0—-0.35/C

auXx

- The confinement enhancement factor is given by

P,—Pg=(@Q/C,)P
Yppe+ = ((2.0—0.35/C_ .. ) / (Pdepll:’dem)avg)o'6 p:ux = ?1 _(1 / CZL:)(()) |3|reaCt0r
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Powers in FFHR-c1.0 FrHrRcl0.Cou=18

Extrapolation from LHD (#115787,t = 3.90 s)
to FFHR-¢1.0 (B o 439T, Rrea = 11.8 m)

react

50 T

cto

s0fN, C_ =18 f =121,
30 F Reactor

0 e

au

(10" m?)

L
\.-.mo "y _".-,SWD-

(keV)

(%)

{a.u.)

(MW)

aux

FFH R-C1.0 (Rc =13.0m, Bc = 4.0 T) (f) (PP svgrencior = 0-816

{a.u.)

v “Q -~ 7" (at Caux ~ 18) with Paux ~ 140 MW A
and Prosion ~ 1 GW 4 05 0 05 1
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Powe s in FFH R'Cl. 1 FFHR-c1.1, C,,, = 1.0

Extrapolation from LHD (#115787,t = 3.90 s)

. #115787, t = 3.900 s => FFHR-c1.1 sp PR By =S8 T Ry = 118 M)
0 ' o ' ] (@) &~ 40 -nleReactlor Cau;=1.0,'fn=16'.6-
£ L g S . ]
. - E ool S,
1000 £ )
3
) _
d _
£ 9t "~ LHD
€ _
g
Caux -
FFHR-c1.1 (Rc =13.0m,B_ =5.3 T) 0" _ (PP ) ercs =064
v “Self-ignition” (P, =0(Q=o0)atC,, =1) s

with P, ~2 GW
v P,,~50MW isenough
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2 types of FFHR-ca (conservative (c1.0) or challenging (c2.1))

Device Name

FFHR-c1.0 FFHR-c1.1 FFHR-d1

R. 3.9m 13.0m pa ;5.6m
helical coil major radius (10/3 times LHD) (4 times LHD)
V ~1,000 M3

~30 m3 ! ~2,000 M3
p|asma volume 3 (Similar to ITER) 6 d
B. . 4.0T 53T LT
magnetic field strength 2.5 (similar to ITER) Nb3Sn / Nb3Al / HTS
at the helical coil center NbTiTa (He Il) / HTS Nb3Sn/Nb3Al/HTS
L~ 1.6GJ 68 GJ 113G 160 GJ
stored magnetic energy (at4T)
P ux 25 MW 140 MW - CW 50 MW - 1 hour 50 MW - 1 hour
auxiliary heating power (short pulse) (for sustainment) (for start-up) (for start-up)
Ptysion B ~1GW ~2 GW ~3GW
fusion power Q>7) (Q =) (Q=o0)
Tduration ~1 hour ~1year ~5 month ~1year
duration time of a shot
(O3 _ ~8 dpa ~7 dpa (20 dpa at peak) ~15dpa
dpa per shot (0.8 MW/m2 x 1 year) (1.7 MW/m2 x 5 month) (2.5 MW/m?2 x 1 year)

large HC winding large HC winding large HC winding
Issues DD exp. R&D of (szriﬁ_SH e/l cooling) nuclear heating on SC nuclear heating on SC
lifetime of SC/insulator lifetime of SC/insulator
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Summary
vFFHR-d1 is a “sub-optimal” heliotron

-R. =14.6 m (4 times LHD), B.=4.7T

- Shafranov shift is effectively suppressed

- neoclassical transport compatible with the alpha heating
- small alpha energy loss of ~10 %

- a new profiles (Cases C and C’) are being analyzed

vFFHR-ca is as attractive as FFHR-da
- R, =13.0 m (20/3 times LHD)
-"Q>7"withB_=4.0T, P, ~140 MW. and P; ..., ~ 1 GW
- “self-ignition” with B_=5.3T and P, ~ 2 GW
- component test up to ~10 dpa will be possible

J. Miyazawa, “Core Plasma Design for FFHR-d1 and c1”, Japan-US WS on Fusion Power Plants Related Advanced Technologies
(Kyoto Univ., 26-28 Feb. 2013)
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Powers in FFHR-d1 FFHR-01, C,yy = 1.0

Extrapolation from LHD (#115787,t = 3.90 s)

. #115787, t = 3.900 s => FFHR-d1 - toFFHR-d1(B_ =516T.R_=142m)
0" ¢ ' — ' ] (a) T n_ C =1.0,f =123]
30 F Reactor J
S 20f *“t‘"“‘--*"""x..w.- :
= ] e °
4 (b) = 10 _Te Reactor ey fT= 6.61 ]
E "_-vﬁ': - Y
s P
g 1 OO (C) ﬁ Reactor -...._-,....'u._ fﬂ = 3.06
R 5f P B VX ]
- . .\,.‘.
10 o bl
: (d) p v =114
- 2 F" e_norm Reactor DPE ]
— LHD
1
e) _
g
C S
aux
FFHR-da1 (Rc =15.6 M, Bc =4.7T) 0 _ PP =088
. el . 5
v "“Self-ignition” (P,,, =0 (Q =) atC,, =1) with s

Ptusion ~ 2 GW (P qion ~ 3 GW is also achievable)
v P, ~50MWisenough
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YDPE YDPE peO norm

f
B

(MW) BO.reactor (%)

reactor

P

ceeee - foislowatR,, =3.55m

2t (VAT . 115787 (2.705)
LA and Y, = 1,20
13} )
| s | v The central pressures similar to those in the y_
1] T ] . . :
o =1.254 configuration have also been achieved
sb i in the v, = 1.20 configuration, in spite of
°l ’ smaller plasma volume (i.e., better
N '; confinementiny, = 1.20)
of ]
| v fs as low as ~3 has been achieved
1000 5
roo] T V' P.eactor CAN be as low as ~200 MW
| R | ¥ Density peaking factor is high (density
ol ' peaking was observed after NB#1 break

n_ (10" m®) dOWﬂ)
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