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The Story 

•  Systems Code identified an optimum steady state scenario: 
-  Confinement time based on assumption of steady state  

•  Is this steady state consistent with equilibrium, transport, stability 
expected from the most up-to-date models 

•  Iteration procedure over adjustments in the scenario details is needed 
to refine the configuration:  
-  Achieve complete steady state and sufficient stability 

•  Iteration procedure defined to: 
-  Simulate in time from initial given profiles to a final steady state 

o  Obtain stationary profiles of ne, ni, Te, Ti, j, and bootstrap current 
o  Use these profiles in place of initial profiles 

-  Simulate LHCD and ICRF to make up the shortfall from bootstrap current 
-  Check performance: confinement, β, fusion power of new configuration 

o  Adjust profiles as needed to achieve desired performance 
-  Iterate until steady state with desired performance is achieved 

•  Aim is to use most sophisticated models for equilibrium, transport, 
current drive, stability currently available 
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Outline: Approach, Optimization Procedure, Initial 
Results 

•  Optimization procedure: 
-  Outline 
-  New features 

•  Reproduced 2006 ARIES-AT Base configuration : 
-  Reconstructed configuration with added H-mode pedestal and 

confirmed steady state temperatures 
-  Simulated LHCD and ICRF to make up the shortfall in current density 

•  Initial results from ARIES ACT I scenario: 
-  Pedestal height and width from EPED1 model sets boundary condition 
-  Profiles collapse due to large energy flux in mid range 
-  Increased density prevents collapse 
-  Some gain from moderate density peaking 
-  Current drive simulations 

•  Discrepancy between Systems Code and initial simulations: 
-  There may be no steady state for these profiles or 
-  Transport model may be poor for this case 

•  Improved results using TGLF transport model partially resolve 
discrepancy 
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Optimization Procedure Begins With Basic equilibrium 
Identified From Systems Code 

•  Iteration: 
•  Incorporate a consistent H-mode pedestal: 

-  EPED1 model to predict pedestal height and width given 
pedestal β	



-  Re compute EFIT equilibria as needed   
•  Transport simulation to evolve initial profiles to steady state 
•  Incorporate current drive sources to maintain configuration 
•  Optimization for β: 

-  Check ideal stability 
-  Optimize to converge to maximum stable βN  

•  q profile optimization: 
-  Adjustment of q profile to improve stability and current drive 

•  Iterate from this as a new initial equilibrium 

•  Shape and size optimization: 
-  Elongation, triangularity and aspect ratio 
-  Size adjustments as needed 
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Physics Overview of Optimization Logic  

First guess: previous ARIES + pedestal, pass through H&CD & force balance 

Heat & current drive  Transport solution 
ONETWO & GENRAY to align profiles 

β optimization: vary pressure to optimize stability 
DCON or GATO codes 

q profile optimization: to improve transport & stability 
changes in H&CD deposition 

Shape optimization: vary elongation, triangularity &  
aspect ratio.  Ultimately change size to ensure  

target performance is reached 

Re-EPED when β changes Re-EFIT at every stage 
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Previous 2006 Effort For ARIES-AT Repeated With 
Improved Tools and Understanding  

•  Similar analysis was done in the past for ARIES designs but: 
-  Design points have been updated with improved Systems Code 
-  Understanding of physics issues has also evolved considerably: 

o  Particularly pedestal modeling and interaction with the core 
•  Analysis involves: 

-  Coupled equilibrium, transport, current drive, fuelling, and 
stability calculations to obtain a steady state solution 

-  Transport model TGLF in place of GLF23: 
o  Real shaped geometry instead of GLF23 shifted circle model 

-  Self consistent H-mode pedestal: 
o  Realistic pedestal height and width predictions with EPED1 

•  Key technical issue is that core transport is stiff: 
-  The largest leverage to improving confinement is increased 

pedestal height 
-  Conversely, H-mode pedestal and ELM physics depends crucially 

on the heat and particle fluxes coming from the core 
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Scenario Repeated With Initial Density and Temperature 
Profiles From Jardin 2006 Fusion Engineering and Design 

ne(axis) = 3 x 1020 m-3 

•  Modified to include H-mode edge density pedestal but Te set to be 
consistent with original pressure from 2006 published result        
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Previous Results Reproduced Using GLF23 and TGLF 
Transport Models With Lower Hybrid Current Drive 

•  Steady state result achieved using GLF23 after one second: 
-  Fixed density and RF heating profiles  
-  Shifted circle geometry assumed by the GLF23 model 

•  Steady state 
profiles using 
GLF23 

No steady state was reached using full geometry TGLF model ! 
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Tools for Self Consistent Optimization of ARIES-AT Design 
Point Are in Place for ARIES ACT Study 

•  Initial case set up with TSC free 
boundary direct equilibrium code: 
-  Equilibrium with H-mode pedestal 

reproduced 
-  Iteration on profiles between free 

and fixed boundary equilibria	
  

κx = 2.21 
δx = 0.77 
ςo,I = 0 
li(1) = 0.54 
βN = 4.77 
q95 = 3.53 
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Fixed Boundary Equilibrium Recomputed from Free 
Boundary Equilibrium is Taken as Initial Operating Point 

Mismatch of inner 
flux surfaces is 
from profile 
differences 

total	
  jtoroidal	
  
self-­‐driven	
  jtoroidal	
  

Alignment of 
boundaries is 
good 

•  Fixed boundary inverse equilibrium code JSOLVER allows better 
freedom in matching current profile with bootstrap current	
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Fixed Boundary Equilibrium Preliminary Operating Point 
Features an Approximately Correct H-mode Pedestal 

Pedestal	
  in	
  pressure,	
  n,	
  T	
  

bootstrap	
  current	
  
IC	
  or	
  EC	
  on-­‐axis	
  current	
  
LH	
  off-­‐axis	
  current	
  

n	
  =	
  ne+Σni	
  

Ip = 10 MA 
κ = 2.15 
δ = 0.7 
ςo,I = 0 

p(0)/<p> = 2.06 
T(0)/<T> = 1.66 
n(0)/<n> = 1.37 
ne(0) = 1.97x1020 

	
   Pped	
  ~	
  175	
  kPa,	
  
approximately	
  expected	
  from	
  EPED	
  

Te = Ti 

q(0) = 3.25 
qmin = 2.3 
βN = 4.83 
l i(1) = 0.49 



ADT08/09 

Transport Calculations Require Equilibrium From EFIT 
Code With Correct Pedestal as Starting Point 

Boundary Profiles 

•  New equilibrium constructed with EFIT using: 
-  Boundary from free boundary equilibrium code and 
-  Most updated profiles from fixed boundary equilibrium code 
-  Pedestal consistent with EPED model 
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EPED1 Pedestal Model  Implemented to Obtain Pedestal 
Poloidal Beta, βp

ped 
•  Transport simulations are well known to be inaccurate in and beyond 

the pedestal in H-mode: 
-  Require the boundary condition to be imposed at a point interior 

to the pedestal 

-  The position for imposing this boundary condition was chosen to 
be at ρ = 0.93, which is at the top of the pedestal   

•  βp
ped value obtained using EPED1 stability analysis by: 

-  Constructing a population of equilibria with varying profiles and 

-  Testing stability for intermediate toroidal mode number n ideal 
modes and kinetic ballooning modes  

•  Optimization against both yields unique values for both height and 
width of the pedestal and a corresponding value for βp

ped 

•  Values in the range 1.0 < βp
ped < 1.1 at ρ ∼ 0.9  provide reasonable 

solutions 
•  The value  βp

ped = 1 was chosen for the simulations  
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EPED1 Model  Takes B0, Ip, R, a, κ, δ, nped, and β as Input 
and Produces pped and Wped as Output  

•  Stability calculated for a series of model equilibria with varying 
pedestal height around nped and width: 

•  Different dependences 
of stability of these 
modes provides a 
unique intersection in 
the space of pedestal 
height and width 

•  Model successfully predicts pedestal in experiments  

-  Intermediate n ideal 
peeling-ballooning 
modes (ELMs) 

-  Kinetic ballooning 
modes 
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Temperature Evolution for ARIES Baseline Model Profile 
With Broad Density Up to Pedestal Region 

•  Temperatures derived initially from equilibrium pressure and the 
prescribed density for the individual species: 
-  Assuming Zeff = 1.27 and Te = Ti 

-  Pedestal ion density determined by value of βp
ped from EPED1 

•  Temperatures subsequently evolved using GLF23 transport model: 
-  Assuming no density evolution and no auxiliary heating  

o  Only energy source is α particle heating 
-  Temperatures held fixed at ρ = 0.93 as the boundary condition 
-  Density is not evolved in these simulations: 

o  Assumed they are maintained against diffusion by a source 

•  Implemented first steps: 
-  First simulation with GLF23 found collapse of temperature profile 
-  Steady state found with increased density: 

o  Increase density factor 1.85 prevents core collapse 
o  Edge collapse only prevented so far by imposed boundary 

condition  
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Initial Simulation Found Collapse of Temperature Profile 
Using Initial Baseline Flat Density Profiles    

•  Profiles ultimately collapsed to boundary condition value: 
-  Essentially, fusion alpha particle heating could not be maintained 

against the outward heat flux 
Electron and ion densities Electron and ion temperatures 

•  Two density scans were performed with varying axis values: 
-  Broad density as in the standard case, and 
-  Peaked density profiles 
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Steady State Temperature Profiles Obtained if Density 
Increased by Factor 1.85 Above Systems Code Value 

•  Profiles of density 
and temperature 
with three different 
values of the axis 
value: 
-  Flat density case 
-  The standard 

case is the lowest 
density case of 
this series  

ne = 2.9 x 1020 

⇒ PDT = 2.9 GW 
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Simulations for Broad Density Show Initial Te Barrier 
Formation That Subsequently Decays 

•  Initial transient increase corresponds to formation of a core electron 
transport barrier and a weak ion transport barrier 

•  Two profiles with the lowest density eventually collapse: 
-  Highest density case appears to reach a steady state with 

elevated temperature and sustained fusion 
-  Axis density is 80% higher than the Systems Code value 
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Density Peaking Typically Increases Fusion Power 
 But the Gain for this Case is Weak   

•  Fusion power is proportional to the density in the core where the ion 
temperatures are above the threshold for fusion:  
⇒  Increasing density 

in the core region 
should increase 
fusion power 

•  Profiles of density 
and temperature for 
the peaked density 
scan: 
-  Again with three 

values for the 
density on axis  

ne = 3.5 x 1020 

⇒ PDT = 2.75 GW 
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Collapse for Intermediate Density Case Partially 
Arrested but Otherwise Little Gain From Peaking density 

profile  •  Simulation was not run for enough time to confirm whether a real 
steady state is sustained  

•  Again, a transport barrier appears transiently In the core: 
-  Somewhat weaker than for the broad density scan  
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Large Bootstrap Current Density Near Pedestal 
Overdrives Plasma in Broad Density Scenario 

•  Bootstrap in core under-drives plasma:   
-  Fast wave near the axis is not feasible to make up difference 

•  Residual Ohmic current density is large and negative overall: 
⇒ Not steady state  

•  Density shaping near edge is needed to better align bootstrap current 
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Auxiliary Current Drive Requirement in Peaked Density 
Scenario is Reasonable for Attaining Steady State  

•  Bootstrap current density is well aligned with total current density: 
-  Need 50 A/m2 on axis current density to drive remaining inductive 

current to zero    
-  Requires 40 MW Fast wave 

•  Residual Ohmic current in steady state is 240 kA with 0.48 MA of RF 
driven current from Lower Hybrid system 
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Additional Density Peaking in Core Found to Not be 
Beneficial as Core Temperatures Collapse   

Electron and ion densities Axis temperature evolution 

•  Additional core peaking applied to peaked density profiles with 
constant pedestal: 
⇒ βN increases from βN  = 3.8 to βN = 5.0   
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Fluxes Computed From GLF23 Show Large Energy Flow 
in Region of Additional Density Gradients  

•  Energy fluxes show outward energy flux in outer region 0.6 < ρ < 0.9  is 
large In both cases  

•  Peaking causes additional energy flow over range 0.2 < ρ < 0.4 

Steady state Temperature profiles 
Electron and ion energy fluxes 
for final ‘steady state’ profiles 
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How Can the Apparent Discrepancy Between Systems 
Code Scenario and These Simulations be Resolved ? 

•  Systems code calculates an energy confinement time by imposing 
power balance from an assumed steady state: 

τE = Wth/(Pα + Paux – Prad ) 

-  GLF23 calculations for Systems Code parameters suggest there 
may not be a burning plasma steady state for those parameters 

•  GLF23 model is based on calculations for microinstabilities in a shifted 
circle cross section equilibrium : 
-  This is likely poor for the strongly shaped ARIES configuration 
-  But full geometry TGLF model is generally even more pessimistic 

•  Other issues with the transport modeling: 
-  Results can be sensitive to boundary condition position: 

o  Model is known to be inapplicable in the pedestal 
o  Where does it break down 

-  Density is not evolved in present simulations: 
o  Implicit particle sources and sinks can cause additional 

energy flows   
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Final Result is Sensitive to Location of Pedestal Boundary 
Condition ρb  

•  Simulations performed with varying boundary radius: 
-  Temperatures fixed beyond ρb value 
-  GLF23 fluxes large outside ρb 

Temperatures Versus ρb Electron and ion energy fluxes 

•  Final temperatures vary with ρb value: 
-  Boundary condition too far out results in collapse 

ρb = 0.6
ρb=0.7
ρb =0.82 ρb =.82

ρb =.6 

ρb =.7
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Results with TGLF transport model are Slightly More 
Optimistic for Standard Density Case  

•  Final result with slightly peaked density profiles (ne  = 1.7 x 1020): 
-  PDT = 740 MW 

•  Density profile not scaled in this case: 
-  Profile modified slightly with additional peaking to avoid collapse 
-  Density evolved with temperatures for some time then fixed 

⇒ βN
ped is no longer exactly 1.0  
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Initial Simulation for ARIES ACT 1 Found Collapse of 
Temperature Profile Using Initial Baseline Profiles 

•  Profiles collapsed below the imposed boundary condition value on 
first simulation 

•  Increased density by factor 1.85 prevented core collapse and 
yielded a steady state: 
-  Density factor has a small range for steady state solutions: 

o  Factor below 1.8 leads to collapse 
o  Factor above 1.9 leads to runaway core peaking 

•  Peaking density yields some benefit but is not large: 
-  Benefit is mainly in current drive requirements 
-  Additional core peaking results in additional core energy fluxes 

and more pessimistic results 
•  Apparent discrepancy with Systems Code identified scenario is 

partly resolved: 
-  Sensitivity to boundary condition 
-  TGLF is surprisingly more optimistic in this case 
-  Further optimization may resolve some more differences 
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Backup slides 
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The Story 

•  Aim is to use most sophisticated models for equilibrium, transport, 
current drive, stability currently available: 
-  TGLF transport 
-  Low n ideal stability 
-  ELM stability controlling of pedestal height 
-  Current drive from ray tracing 

•  Simulation performed for 2006 ARIES study as a check: 
-  Confirmed essential published results 
-  Some minor differences  

•  Simulation for newest ARIES ACT I design: 
-  Pedestal obtained from EPED1 model 
-  Initial simulations with Systems Code prescribed parameters do 

not yield steady state 
-  Steady state can be achieved over a small range of density 

roughly 80% higher than the prescribed value 
-  Current drive requirements are reasonable  
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Future Plans Intend to Complete Optimization for Self 
Consistent Steady State Scenario 

•  β optimization: 
-  Initialize with βN = 5.7 
-  Check ideal stability 
-  Optimize to converge to maximum stable βN  

•  q profile optimization: 
-  Adjustment of q profile to improve stability and current drive 

potential 
•  Shape and size optimization: 

-  Elongation, triangularity and aspect ratio 
-  Size adjustments as needed 

•  Aim to use IMFIT for automation of core loop of transport self 
consistently optimized with heating and current drive 

•  In the initial steps of the subsequent optimization, the GLF23 transport 
model will be used: 
-  Considerably faster than the more accurate TGLF model 
-  Utilize TGLF once simulations are partially converged  
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Pessimistic TGLF Result May be Due to Full Geometry or 
to Other Features of the Model 

•  Run one iteration to obtain individual diffusive and convective fluxes: 
-  Calculate individual fluxes and sources and compare with: 

o  TGLF with shifted circle geometry 
o  GLF23 (shifted circle geometry) 

•  Run to steady state: 
-  If TGLF reaches steady state with shifted circle geometry then the 

shaping is the culprit: 
o  Determine sensitivity to small tweaks in shape and profiles 

-  Otherwise it may be simply higher accuracy of the TGLF model 
-  May need rotational shear stabilization from neutral beams 

•  TGLF and GLF23 are known to fail to predict experiments for ρ > 0.85 
even in L-mode: 
-  Present boundary condition taken to be at pedestal (ρ = 0.93) 
-  Option to move this boundary condition in and apply at ρ = 0.85: 

o  Steady state was reached with boundary arbitrarily moved 
to ρ =0.82 

-  Need to properly match profiles between ρ = 0.85 and ρ = 0.93 
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Code Linkage Overview of Optimization Procedure  

•  IMFIT code structure 
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Previously Optimized ARIES Lower Hybrid Heating and 
Current Drive Scenarios Using CURRAY  

•  Aimed to drive non-inductive off-axis current in 0.8 <ρ< 1.0 
–  (S.C. Jardin, Fusion Engineering and design (2006)) 

•  Two scenarios studied with different density: 
–  4 or 5 wave spectra of LH grills, each centered at a different N//, were 

determined to have relatively broad profile  

Freq 
(GHz) 

N// θ   Power  
(37 MW) 

   I/P    
(A/W) 

3.6 1.65 -90 3.06 0.053 

3.6 2.0 -90 4.40 0.049 

3.6 2.5 -90 8.22 0.039 

3.6 3.5 -90 8.87 0.024 

2.5 5.0 -90 12.39 0.013 

Freq 
(GHz) 

N// θ   Power 
(20 MW) 

   I/P    
(A/W) 

4 1.7 -90 2.94 0.057 

4 2.0 -90 3.24 0.052 

4 2.5 -90 5.43 0.041 

4 4.0 -90 8.17 0.021 

ne(0)=2.93×1020 m-3, Te(0)=26.3keV, Zeff=1.9 ne(0)=2.74×1020 m-3, Te(0)=28.2 keV, Zeff=2.0 

Scenario 1 Scenario 2 
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For Scenario 1 GENRAY Predicts 0.63 MA Total Driven 
Current From Lower Hybrid System 

Normalized toroidal flux 

Grill    f 
GHz 

N// θ   Power  
(37 MW) 

   I/P    
(A/W) 

   1 3.6 1.65 -90 3.06 0.013 

   2 3.6 2.0 -90 4.40 0.020 

   3 3.6 2.5 -90 8.22 0.024 

   4 3.6 3.5 -90 8.87 0.021 

   5 2.5 5.0 -90 12.39 0.010 

LH
C

D
 d

riv
e

n
 c

u
rr

e
n

t 
(A

/c
m

2 )
 

Total 
grill1 
grill2 
grill3 
grill4 
grill5 

GENRAY  

Driven current at higher 
density is much smaller 
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Normalized toroidal flux 
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m
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LHCD 
ILHCD=0.63 MA 

ICRF 
IICCD=0.11MA 

GENRAY 
•  ICCD System: 

Additional Current Driven by ICCD System in Core 

f = 96 MHz 

N//=2.0 

P=4.7MW 

θ = -15o 
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Comparison of Driven Current Profiles from GENRAY 
with  CURRAY Results Show Lower Current Driven 

Normalized toroidal flux 

D
riv

e
n
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u
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e
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/c

m
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LHCD 
ILHCD=0.63 MA 

ICRF 
IICCD=0.11MA 

GENRAY 

LHCD 
ILHCD=1.07 MA 

ICRF 
IICCD=0.15MA 

CURRAY 

•  Lower current drive found than in 2006 paper probably due to 
additional density pedestal in new simulation 
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Base Line ARIES H-mode Case From 2006 Study 

•  ARIES H-mode 
cross section: 

•  q profile: 
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Detailed Configuration (JSOLVER equilibrium) Matches 
Systems Configuration Reasonably Well 

Systems	
  	
   Detailed	
   ARIES-­‐AT	
  

R,	
  m	
   5.5	
   5.5	
   5.2	
  

IP,	
  MA	
   10.6	
   10.0	
   12.8	
  

βN	
   4.5	
   4.83	
   5.45	
  

BT,	
  T	
   5.5	
   5.5	
   5.86	
  

n/nGr	
   0.95	
   0.87	
   1.0	
  

n(0)/<n>v	
   1.3	
   1.37	
   1.35	
  

T(0),	
  keV	
   26.8	
   26.4	
   31.2	
  

<T>v,	
  keV	
   16.6	
   15.9	
   15.9	
  

IBS,	
  MA	
   9.54	
   8.35	
   11.65	
  

ICD,	
  MA	
  (on,off-­‐
axis)	
  

1.06	
   1.3	
  (0.38,	
  0.95)	
   1.28	
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Preliminary Ideal MHD stability of high-n ballooning and 
external kink modes 

Ballooning	
  unstable	
  on	
  4	
  out	
  of	
  200	
  surfaces,	
  all	
  outside	
  
pedestal	
  locaQon	
  

Weak	
  instabiliQes,	
  high	
  criQcal-­‐n	
  number,	
  should	
  use	
  
EPED	
  stability	
  analysis	
  for	
  this	
  region	
  

External	
  kink	
  modes	
  (using	
  conformal	
  wall,	
  unstable	
  with	
  no	
  
conducQng	
  wall)	
  

Mode	
  number	
   b/a	
  to	
  stabilize	
  (real	
  distance	
  
from	
  plasma	
  surface)	
  

n	
  =	
  1	
   0.46	
  (0.633	
  m)	
  

n	
  =	
  2	
   0.45	
  (0.619	
  m)	
  

n	
  =	
  3	
   0.425	
  (0.584	
  m)	
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Future Work will Invoke Multimode Transport Model  

•  TGLF is more sophisticated than GLF23 but is much slower 
•  Multimode code claims to have the sophistication of TGLF: 

-  Density factor has a small range for steady state solutions: 
-  But is claimed to be ten times faster 


