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Background  
    Kyoto University pursues the Biomass Hybrid concept from 

    various aspects. 

 

    Particular interest is on Socio-Economics and possible 

    scenario for early introduction of Fusion, with minimal 

     extrapolation of the current technology. 

  

    Safety, environment and the adoptation to the future 

     energy system are our current concern. 

Contents 
   - LiPb blanket and tritium recovery / SiC study 

      - zero-carbon electricity system with Micro DC grid. 

      - Tritium in the environment 
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Droplet  and  Diffusion 
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droplet diameter is a 

key factor for 

optimum design of 

the extraction system 
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A:   Tritium balance study 

To explicate the recovery 

rate of Biomass Gasification 

fusion reactor  GNOME 

B:   Tentative observation of droplet 

formation  

from 1mm dia. nozzle by an 

experimental setup (one point data ) 
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Development of Vacuum Sieve Tray 
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Tritium Balance in plant 
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Tritium Recovery Process  
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Regulation for HTO 

Tritium permeability through 
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Water (H2O) vs. Liquid Pb-17Li 

Density Visco-

sity 
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L[m] ρUL/μ U2/gL ρU2 L/σ 

H2O 1.0E+3 1.0E-3 0.07 20 3 1.0E-3 3.0E+3 9.2E+2 1.3E+2 
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17Li 
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Deducing formula 
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01.89dropletd D

0

qta e 

Deducing formula 

Fastest grow rate at 

ka=0.6970 overwhelm 
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Experimental Result 

droplet dia. vs. nozzle 
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Liquid metal Pb-17Li droplet 

A:  Theoretically deduced droplet size formula is 

 

B:  Effective range is less than ϕ2.2mm 

Both good accordance with the experimental 

results and well applicable for extraction system 

design engineering 

What is achieved in this study 

01.89dropletd D
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SiC/SiC cooling panel 

 
SiC cooling panel 

 ・Actively cooled SiC  

    panel to control 

     heat transfer  

  ・isolate outer RAFM  

     vessel structure 

  ・obtain high   

     temperature LiPb  

     for heat 
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Blanket parameters 

Heat flux to the FW 0.2 MW/m2 

Neutron flux from the plasma 0.5 MW/m2 

Boundary temperature at the 

LiPb/SiC interface 

1000 oC 

He temperature at F82H 

channel 

350 oC 

He temperature at SiC 

channel 

850 oC 

Heat transfer coefficient of He 

coolant at F82H channel 

10000 W m-2 K-1 

Heat transfer coefficient of He 

coolant at SiC channel 

7000 W m-2 K-1 

Thermal conductivity of F82H 33.3 W m-1 K-1 

Thermal conductivity of SiC 20 W m-1 K-1 



複雑形状の接合 Fabrication R&D for SiC cooling panels 
Institute of Advanced Energy, Kyoto University 



LiPb circulated >900゜C 

SiC module 

Installed in 900 ゜ C vessel 

IHX heat transfer from LiPb to He 

Loop operated >900 ゜ C 

Only in the test vessel 

ヒーティングコイル 

アルミナ管 
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LiPb/He dual coolant loop 
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In CVD SiC, 

diffusion in grain 

boundary weems 

major path. 

In Hexoloy(a), 

diffusion in bulk 

Is regarded as 

major path.   
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▼CVD SiC 

(permeation experiment) 

○CVD SiC [This work] 

(permeation experiment) 

◀Hexoloy 

(permeation experiment) 

◆α SiC powder 

(solution diffusion experiment) 
▲β SiC fiber 

(solution diffusion experiment) 

□CVD SiC [This work] 

(solution diffusion experiment) 
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Hydrogen permeation through SiC 



Name ITER GNOME Slim-CS CREST 
ARIES-

RS 
ARIES-

AT 
PPCS-A PPCS-B PPCS-C PPCS-D 

Country Japan Japan Japan U.S. U.S. Euro Euro Euro Euro 
Group Kyoto JAERI CRIEPI ARIES ARIES 

    
proposed 

year 
  2010 2007 2000 1998 2000 2005 2005 2005 2005 

Major radius Rp m 6.2 5.2 5.5 5.4 5.52 5.2 9.55 8.6 7.5 6.1 
Minor radius a m 2 1.7 2.1 1.6 1.38 1.3 3.2  2.9  2.5  2.0  
Plasma current Ip MA 15 10.4 16 12 11.32 12.8 30.5 28 20.1 14.1 
Toroidal field Bt T 5.3 4.4 6 5.6 7.98 5.86 7 6.9 6 5.6 
Maximum field Bmax T 11 16 12.5 16 11.1 13.1 13.2 13.6 13.4 
Safety factor qy   3.6 5.3 4.3 
Average temperature <Te> keV 8.9 13 17 15.4 18 22 20 16 12 
Average density <ne> 1020 m-3 0.61 1.1 2.1 2.15 1.1 1.2 1.2 1.4 
Improvement factor HHy2   1.4 1.3 1.37 1.2 1.2 1.3 1.2 
Imporvement factor H89P   2.59 3.2 2.65 
Normalized beta bN   3.1 4.3 5.5 4.8 5.4 3.5 3.4 4 4.5 
Bootstrap current 

fraction fBS % 
45 66 83 88 45 43 63 76 

Normalized density fGW   0.54 0.97 1.3 0.915 1.2 1.2 1.5 1.5 

Fusion power 
Pfus MW 

500 

(700) 
324 2877 2970 2170 1755 5000 3600 3410 2530 

Conversion efficiency η   2 0.41 0.38  0.59 0.31  0.37  0.43  0.60  

Current drive power 
PCD   

73 

(100) 
60.7 83 97 81 34.6 246 270 112 71 

Neutron wall load 
Pn   

0.57 

(0.8) 
0.48 3.1 4.5 4 3.3 2.2 2 2.2 2.4 

Energy multiplication Q   10 5.3 35 20 13.5 30 35 
Structure material     V & steel ferrite ferrite ferrite ferrite SiCf/SiC 
Support material     SiCf/SiC SiCf/SiC 

breeder material 

  

  solid Li2ZrO3 Lq. Li LiPb LiPb 
Li ortho-

silicate 

w/ Be 
LiPb LiPb 

Coolant 
  

  LiPb water water Lithium LiPb 
water (15 

Mpa) 

He (8 

Mpa) 
LiPb LiPb 

Coolant temp.   
oC  > 900 610 1100 300 300-500 700-1100 



DEMO power/tritium system 

plasma blanket 
IHX 

turbine 

Heat 

rejection 

Tritium 

recovery 

Reactor hall 

divertor 

Fuel 

cycle 

detritiation 

plant 

detritiation 

detritiation 

Tritium in power system is the major issue from TBM to DEMO. 

1 
2 

3 
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Blanket and tritium flow 

breeder coolant Tritium 

recovery 
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Primary coolant issue : accidental release 
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Source: The 2011 Pacific Coast of Tohoku Pacific Earthquake and the Seismic Damage of the NPPs, p9, Report to IAEA from NISA and JENES, 4th April, 2011  

Reactor Building 

(R/B) 

Pressure 

Containment 

Vessel (PCV) 

Dry Well 

Spent Fuel Pool 

Reactor Pressure 

Vessel (RPV) 

Suppression Chamber 
Source: http://nei.cachefly.net/static/images/BWR_illastration.jpg 

In the case of BWR.. 



Blanket and tritium flow 

breeder coolant Tritium 

recovery 
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SiC-He heat Exchanger  

Heat exchange 

element 

Heat exchanger 

unit 

vessel 

insulation 

2ndary 

Tubes/ 

connect 

bellows 

2ndary 

He in 
1mary He in 

2ndary 

He out 

1mary 

He out 

1mary He in 
1mary 

He out 

1mary 

Tubes/ 

inlet 

insulation 

Heat exchange 

element 

2ndary 

He out 

2ndary 

He in 

2ndary He out 

2ndary 

Tubes 

Institute of Sustainable Science Institute of Advanced Energy, Kyoto University 



DETRITIATION 

SYSTEM 

BUILDING 

DETRITIATION 

SYSTEM 

FUEL LOOP 
PIPING 

VACUUM 

VESSEL DETRITIATION 

SYSTEM 

TURBINE 

GENERATOR 
HX 

Tritium confinement 

volume 

plume 

soil 

plant 

deposition 

Ground 
water 

Emission controlled by confinement 

 and active detritiation both in 

Normal and accidental 

Condition. 
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Contami- 
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Yearly change of tritium concentration 
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Change on the tritium concentration in the atmosphere 

during prolonged operation is analyzed. 

5.7 km west 

100 km west 

•Tritium concentration increase for about 60 years on land. 

•Tritium concentration on the sea surface is low and dose 

not show accumulation 

Emission rate: 1.35x1014 Bq/year 
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Atmosphere HTO concentration after 100 years operation. 

Tutorial course 



・Environmental models converts emission to dose. 

・Major dose from normal operation comes from ingestion 

・mSv per person, per year per 1 gram emission. 

    particular concern is a damage for sales of food 

products. 

Total tritium dose during 1 year 

operation calculated by NORMTRI. 

Structure of NORMTRI model 

Accumulation in the environment 

Acknowledge W. Raskov and D. Galeriu 
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5.7 km west 

100 km west 

Operating time:  1 year Operating time:  2 years Operating time:  4 years Operating time: 10years Operating time: 20 years Operating time: 40 years Operating time: 60 years Operating time:80years Operating time: 100 years 

•Considerably increases for 20 years 

•Still negligible from dose, but easy to detect. 

   - If 100 plants operated 100 years? 

Emission rate: 1.35x1014 Bq/year 

Accumulation in the environment 

Annual emission accumulates in the environment 
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With accumulation, dose is still below 10 mSv/year 

•However, 15 times larger than the first year. 

Tritium dose: 1 year operation 

Tritium dose: 100 years operation 

Effects on dose 
Institute of Sustainable Science Institute of Advanced Energy, Kyoto University 



Coastal model Inland model 

Coastal siting absorbs tritium by isotopic dilution 

•Inland tritium also decreases by the tritium migration  

•Existence of sink prevents environmental 

accumulation. 

Tritium concentration distribution 

Effect of open water surface 
Institute of Sustainable Science Institute of Advanced Energy, Kyoto University 
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5.7 km west 

100 km west 

•Inland tritium continue to accumulate until balance 

with decay. 

•Little accumulation observed on the coast. 

Emission rate: 1.35x1014 Bq/year 
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Atmosphere HTO concentration after 100 years operation. 

Stopped accumulation 
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Off shore siting is even more effective. 

Emission at 5 km from the coast decreases  

Atmospheric tritium to 1/10. 

Coastal model Off shore model 

Tritium concentration distribution 

Off-shore location 
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• Tritium can be well controlled but normally discharged at below 

     legal limits.(annual, single plant.)  

• Water detritiation requires further development and significant 

cost is anticipated.  

 

• Tritium in the environment and foods can easily be detected. 

• Annually controlled emission can be accumulated and spreads. 

• Releases from multiple sources can be summed. 

 

• Canadians report tritium control experience in normal operation 
    of Heavy Water Reactors (expensive coolant with minimal 

    loss with reasonable efforts) to be 1000Ci/y order /unit.  

→Fusion should be as clean as fission with minimal cost. 

 

Tritium in the Environment 
Institute of Sustainable Science Institute of Advanced Energy, Kyoto University 



Electric grid capacities 

Physics Today, vol.55, No.4 (2002) 

Stability of the grid is region specific. 

Eastern 
Grid 

~500GW 

Texas 
Grid 

~53GW 

Western 
Grid 

~140GW 

East 
Japan 

~80GW 

West 
Japan 

~100GW 

UTPTE 
~270GW 

Thailand 
~20GW 

Vietnam 
~8GW 

Extremely large  Grids in a country 
Internationally connected Grids 
Delicately controlled grids 
 
      - these are all exceptional in the future energy market. 

Electric grid is a national security issue and 

cannot be easily integrated. 



Physics Today, vol.55, No.4 

(2002) 

Fusion startup could be a problem 
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All the generators on the grids are synchronized 

 → Exactly same amount generated as demanded. 

Sudden increase of demand or unstable generator 

• Demands exceed generation capacity 

• Frequency drops (~0.1%) 

• Load to the generators  

• Generator disconnected 

 

Chain reaction kills the grid.  

 →unstable renewables can 

       initiate the blackout. 

 

 

Zero-carbon energy Kyoto 

Frequency drop by load 

Small grid, large load, 

Fast change should be 

Avoided. 



Fire 

Hydro 

Nuclear 

Fire(Coal) 

 0         6        12      18   24(h) 

variable 

. 

• For near term, leveling of 

   the load is important. 

• Local generators, co- 

   generation and batteries 

   preferred. 

• Increased renewable  

   jeopardizes grid 

• For future, substitute of  

   fire power needed. 

 →load leveling power 

      is preferred. Can fusion be a base load? 

 

 

   

 

 

  

Hydro 

Solar 

Wind 

Load 

Leveling 

needed 

Daily  Peaks 

Hydro 

Base 

load 



・unpredictable change of generating power of renewable is large 

・time constant of seconds 

・controlled power to compensate this change needed 

・connecting to grid decreases amplitude but not time constant 

・fire power can provide only slow change (~5%/min) 
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Change of solar in a day 

Required  
Stabilizing 

power 

Fluctuation of renewable 

Daily change of solar 



Future low carbon  Systems 

Battery 

Large scale grid 

generators 

Local systems 

Solar cell 
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Electricity must be powered by 

Carbon-free sources 

Nuclear 

(??) 

Both large grid and local 

systems are needed. 

Fire 

(fade out) 

Fusion 

(to come) 

PHV,EV 

Battery,  generators and  

fuel cells Stabilizes 

fluctuation by  renewables. 

Large scale supply of fuels for  

Fuel cells needed. 

Solar cell 

Fuel cells 

SOFC 



  
Power 

[kW] 

Max.pow

er[kW] 

capacity[

kWh] 
units area[m2] Vol.[m3] 

Solar 633  566.2  - - 4740  - 

battery 364.7  420  2625  7  - 16.7  
Fuel cell - 988  - - - 5.6 

計 998  1974  2625  7  4740  22.2  
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Future Energy Systems 

FIRE 

NUCLEAR 
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Load 
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Electricity will be powered by 

Carbon-free sources 

Fusion 

Day peak will be supplied by 

Battery and fuel cells. 

Institute of Sustainable Science Institute of Advanced Energy, Kyoto University 
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H2 
16 GL/day 

2.9 GL/day 

Indirectly supplied  
by fusion 

6.7 GL/day・104Microgrid 

Fusion and grid 
Institute of Advanced Energy, Kyoto University 

Fusion will be  started by  

night  sources 
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2025cost(NEDO) 

• Micro Grid can be cheaper 

than large Grid for long runs. 

• combination of generation 

technology is needed to 

stabilize the supply. 

• Carbon-free system can be 

made before 2050. 
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Institute of Advanced Energy, Kyoto University 



biomass hybrid from tritium aspect 

○Fusion –biomass hybrid may demonstrate fusion energy  

    earlier than pure fusion electricity. 

   ・small power generation has better market chance. 

   ・cost requirements for the product (hydrogen, oil) may be   

          easier  (eventually. Depends on oil price and carbon tax) 

   ・fusion-fuel cell combination may be a preferred option. 

○High temperature blanket/divertor are realistic challenge  

   ・SiC-LiPb blanket being developed. 

   ・low pressure system is preferred from safety aspects 

 

○ Tritium self sufficiency and environmental effect is concerned.  

  ・tritium recovery from breeder needs demonstration (TBM) 

  ・demonstrated safety will be important to launch DEMO 

  ・environmental tritium contamination needs social understanding. 

 

 

  

Institute of Advanced Energy, Kyoto University 



 

• Fuel production from biomass continued to be 

studied.  

• Fukushima accident required additional consideration 

for fusion safety. 

• High temperature, low pressure LiPb blanket has 

preferred safety features.  

• Public is aware of Existing radioactive contamination. 

• Energy security with renewables will be a major 

concern in the future. 

• Fusion needs an adequate position in the future 

energy system.  

       

Conclusion 
Institute of Advanced Energy, Kyoto University 


