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1. Introduction: power handling in DEMO reactor

e Power handling by plasma operation, divertor design and target engineering is the

most important issue for the reactor design.
“SlimCS” aims P; <3 GW (P, .,,= 600~700 MW) with reduced-size CS (R = 5.5m and
A=2.6) = Power exhausting to SOL is 5-6 times larger and R is smaller than ITER.

Slimcs ~ Power handling factor (P/R) is 6-7
F>1c . =295 GW 2-0 P e(bran ‘1 sync_) times |arger than ITER
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Extension of ITER divertor concept for the DEMO divertor

Design concept for ITER divertor is applied and extended to SIimCS divertor:
“divertor detachment” (T~ a few eV) is a key for the power handling.
Flux expansion is smaller than ITER due to large separation of Div-coil from plasma =
(1) Divertor leg and inclination of the target are larger than ITER

=increase radiation and recombination upstream of the target = reducing gt@'eet,
(2) V-shaped corner = enhance recycling near the strike-point.
(3) Impurity seeding such as Ne, N,, Ar, Kr, Xe = enhance edge & divertor radiation
For the first design, effective wet area
S~ / is increased comparable to ITER:
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2. Recent studies of power handling for demo divertor

e
Divertor concepts of the power handling for DEMO reactor have been investigated:

(1) Power exhaust have been studied in the “conventional divertor” , extending from
the ITER divertor design, i.e. increase radiation power and detachment:
modelling and divertor design, has been progressed using SONIC
= Key parameters for plasma transport modelling such as diffusion coefficient

Effects of the divertor geometry such as “Long leg divertor”

(2) Studies of the “advanced” DEMO divertor started:
Connection L, (L;,B,/B,) and Wetted area (A,,,) are increased:
= Magnetic configurations and coil currents of “Super-X divertor” (L,, & A, ;)
and “Snow-flake divertor” (L,, & flux expansion) are investigated.
Detachment control (“ITER divertor concept”) will be combined with the approach.

(3) High radiation loss in edge plasma (f,,,>50%) will be investigated (furture work):
< restricting core-plasma performance and extra radiation power load to blanket.



Development of divertor simulation: SONIC

* Transport modelling of plasma and impurity (Ar seeding) changes formation of
detachment and radiation distribution in the divertor

- Effects of the divertor geometry (divertor leg, exhaust location, V-shape corner,

etc.) has been studied in SONIC simulation in order to reduce the target heat load.
[1] Asakura, et al. J. Plasma Fusion Res. SERIES 9 (2010) 136. [2] Hoshino, et al. PET 2011.
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Recent improvement of SONIC for DEMO divertor simulation

Input parameters: P_ .= 500 MW, I ,=0.5x10%3s(r/a=0.95), %; = X. =1 m?s?, D = 0.3 m%s?

SONIC was calculated in a time scale of impurity transport in the divertor (50-100 ms).

e Conversion to self-consistent coupling solution of the fluid plasma, MC neutral
and MC impurity (Ar) became more stable under the Demo divertor condition:
g, in SOLis 5 times larger than ITER, A% of 2-3 mm is smaller due to T, T, higher.

e Applying techniques and corrections are such as
(1) using distribution of Ar atom and particle balance

. . 0.35x10%'Ar/

under the divertor (exhaust route), which was pre-

calculated to a steady-state condition (see right), puff
(2) smoothing source terms just above the
target to reduce MC noise/perturbation, 10.5x102'Ar/
(3) correcting thermal force term to include s (10x/,,)
effect for long mean-free-path, 8.4x10%1Ar 0.7x10%*Ar
i.e. reduction at high T;, etc. /s (8XM,)

For the detached divertor, Ar backflow from

exhaust slots was handled as gas puff:
[,%°™(in) = 8.4x10°* and I, “°™(out) = 10.5x10%* Ar/s. A S (1x. )
Ar




Impurity transport is simulated in the detached divertor

tot
I:,rad / Pout

increased to ~92% (P, 4= 460MW),
radiation is distributed at edge and divertor: P, fdee&0L/p

=39%, P

rad

div/p, = 53%.

Partial detachment (T, < 1-2 eV) is seen near the strike-point ( < 3cm).
T. is high 70 eV at outer flux surfaces, due to low density (low collisionality)

T, T; and n_ profiles at outer target
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Power load profile at the outer target in detached divertor

heat load of the plasma transport (conduction and convection) is reduced to ~“8MWm~
Surface recombination of low-temperature ions contributes near the strike-point.

e Radiation load is large (4-7 MWm2) over a wide area in the outer divertor

= peak heat load (q,,,,,) is “18MWm due to radiation source near above target.

Radiation profile
1024D/wxdr-07/SONIC-Reference
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Location of large radiation volume affects heat load profile

Peak g, is 7 MWm near the inner strike-point :
due to surface recombination near the strike-point. Plasma load is small (< 2MWm™).

e Radiation moves upstream in the full detachment 50, 10%m) V) o
= Otarget IS 3-5 MWm? mostly due to radiation load. | atinrer target
Note: P, dVN =114 MW (P, @VN/P_ . = 23%) is smaller than =~ 120 e {15
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3.1 SOL diffusion is a key to determine detachment

Influence of radial diffusion on detachment and radiation profiles is investigate:

SOL diffusion is enhanced: x =2 m?/s & D =0.6 m?/s (ref. ¥ =1 m?/s & D =0.3 m?/s)

= A/ tis increased slightly from 2.2 to 2.7 mm.

e detachment and heat load are significantly affected:
T, T.and n, decrease, radiation region moves upstream 3

= both radiation load and plasma load decrease

= peak q,, g is “5SMWm™2 1122Mxdr04/SONIC-4&Dx2
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Diffusion at the outer SOL affects detachment and g-profile

Non-diffusive transport such as “blob” has been widely determined in experiments:
At the outer SOL region (r™d > 1.5cm: 15 cm at divertor), ¥ =5 m?/s & D =1.5 m?/s

.. (10%°m=) _ (ev
e SOL plasma near the separatrix is affected by rey at'lute, Toer] %
enhancement of diffusion in the outer SOL - Ney=1m2/s  Ey=5m2

- L 0
=T, T.and n, decrease, radiation region moves upstream D= i.i mzs YD =152/
= peak q,, g is “7TMWm™?
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3.2 Effects of the divertor geometry on detachment

In the previous study [1], effect of V-shaped corner was demonstrated

Divertor leg (L) is extended from 1.7m to 2.6m, while flux expansion is decreased.

“longer leg divertor” (L, =L B il B,) is expected to decrease target temperature:
Tg,o<d, 7 /n 2L, (from 2-point model)

Standard

#MSH_longlegD_inc
T T T ’

* Outer divertor leg is 1.5 times longer (L,°"8=2.58 m/ lSPSfd=1.72 m)
* In the parallel, L, '°"¢/L, 5*9=1.2 near the separatix
* Flux expansion d_,. /d _..=11.4 in the standard case, and 6.0 in the Long-Leg case

odiv/ ¥ mid™—



Simple radiation model (in SONIC) was used to survey the
geometry parameters for the first & fast investigation

D fon Input parameters
Plasma

Fluid energy Core boundary at r/a=0.95
! 0SS -
soLoor |RS wresten | F,=6x102s"
o Q= Q=250 MW
Gas Puff
6x1022 s from mid-plane

4%x1022 51 from outer div.

particle
source
momentum

generation energ IOSS&
ionization
charge exchange

Neutrals Impurities

Monte Carlo Monte Carlo 3
D neutrall NEUT2D |¢— =| mpmc | - . pump = 200 M°/s
— — = J Impurity  p_03ms
= interaction generation )
charge X =1.0m?/s

exchange

In the present study, Ar impurity is treated by a non-coronal model instead of
the IMPMC calculation:

’Drad = L(Te'tr) NaNe

n,=0.04g._.n , n,=0.02g. .n

Jimp - @ cONtrol parameter to achieve P ;*°* = 460MW.

*H. Kawashima, Plasma Fusion Res. 1(2006)031, K. Shimizu, Nucl. Fusion 49(2009)065028.



Radiation load to the divertor is decreased for the long leg

Z (m)

Radiation
Power(MW)

Stan- Long
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v

The radiation heat
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Detachment area is extended outboard (210cm) for long-leg

* both T; T,and n, decrease, and radiation region moves upstream
= radiation load decrease = peak heat load decreased from 15 to 10 MWm~2
recombination and neutral load are still large since recycling is still dominant.

Location of the exhaust slot also affects enhancement of recycling:
= Divertor design of the geometry and exhaust location will be improved to satisfy
radiation control and particle exhaust.

Standard Long-Leg
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c | 5 5 ] ' | | ionheat ] lon . .
f 8 A /] T VA 7 elgctron heat ' S o fo S élvéﬂc"tﬂrvbﬁhvééf vvvvvvvvvvvvv ] (24%)  (11%)
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< r . Rec.
! (10%)  (37%)
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g : : : ; i ° *
E 2 :" 7/ ................................ ________________ _____________ . Rad (44%) (17%)
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4.1 Magnetic structure study: Super-X divertor

Longer leg and wide wetted area (A,,,): “Super-X divertor”
Aet = [Bo/Bilso [Ryiv/Rsoil Agol/sin® = T, reduction is enhanced ! [6, 7]

At the first step, magnetic configuration for SIimCS is investigated with minimal
number of E-coils outside TFC = divertor volume and coil currents are determined

= detachment and head load reduction will be studied.

Super-X divertor
HPDX (A=2.5, R,=2.1m)

(High Power Density Experiment)

[6] M. Kotschenreuther,et al., Nucl. Fusion 50 (2010) 0350083.
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Divertor geometry is determined mostly by SX-null location

(1) Main divertor coil is shifted from #8 to #9,
(2) SX divertor coils (reversed currents of #7&8) are necessary to obtain the SX config.
(3) Large current of #6 is necessary to extend the field lines towards the outboard

Large divertor coil current (~200MAT) and SXD coil current (-70MAT) are
required to have a compact (smaller R,) SX divertor.

Super-X for SIimCS in Horizontal maintenance option

+235(MAT)

+162(MAT) 8| -16
68

Note: size of coil do not correspond to the current



Internal divertor coils are preferable for currents

Internal diver coils are required to obtain the SXD

configuration with comparable currents of the std. [[STP SN FR PR P RS
STD. -8 -2

divertor.
: : : +36 +17
< engineering work (neutron & thermal shields,
External -67 +107 -99 +241

feedthrough, VV design etc.) is necessary.
Intermid. -22 +37 -31  +72

Internal -5 +10 44 +18

Séﬂer-x divertors for SIimCS (vert. maint. option)




4.2 Magnetic structure study: Snow-flake divertor

“Snow-Flake divertor”: Larger flux expansion (F), i.e. longer connection (L)), is
obtained in a given divertor volume [8,9].

enhancement of P, and reduction of peak q,, are expected near the null-point.

Initial survey of the divertor coil currents shows

= large currents are required for lower CS coils as well as Div. coils, and
influence of the current distribution on the plasma shaping control.

D-coils will be installed inside and CS coil design = Coil design issues are increased

Separatirix for snow-flake Flux expansion & B, ratio
(filament currents model) F =A.,/Anq G=B, /B
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- —— —
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Snowflake divertor for
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p,max IIIL_(‘ ‘ P

Adlre

[8] Ryutov, Phys. Plas. 14 (2007) 064502




Summary: Progress in DEMO divertor design

e Power handling scenario is the critical issue for DEMO divertor.
Simulation study of the power handling (P,,, = 500 MW) have been progressed:

(1) Power handling simulation with impurity (Ar) seeding:
Conversion of solution became more stable by recent development of simulation.
For P, ,°*= 460MW (P /P .~92%),
plasma detachment (T, ~ T.< 2 eV) obtained near the outer strike-point (< 3 cm)
= peak giyper = 18 MWm-2: radiation power load is dominant (*7MWm™).
Radiation load (3- 7 MWm™) is dominant over a wide area at both targets.
= Control of radiation distribution is the important issue.

(2) Investigation of key physics issues and divertor geometry effects:
Diffusivities and their profiles are important key
= peak g, varies from 5 to 18 MWm™
Longer divertor-leg (1.8->2.7m) is efficient rather than flux expansion
= peak gy, 4 decreases to 10 MWm™

(3) Investigation of the magnetic structure (Super-X, Snow-flake) may help or
improve the divertor design:
studies of coil arrangement and magnetic configuration started:
large divertor coil currents are required for the case of external arrangement,
while severe coil design issues are increased.



Future plans for power exhaust simulation

Radiation power load is dominant, and control of the radiation power

and distribution is important.

*Radiation region/distribution would be control by

(1) different impurity species such as Ne, Kr, Xe, etc. and puff locations,

(2) geometry of target inclination and pumping duct,

(3) impurity transport (pinch/diffusion) in edge will be considered in
core-edge boundary region (now r/a >0.95 is treated).

* Photon absorption by dense and large-size divertor plasma will affect

distribution of the detachment - evaluation of absorption incl. atomic
model.

* Magnetic structure and effect on the plasma will be investigated in
SXD and SFD.
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The power flow is almost the same except the heat to the outer divertor.
In the outer divertor, about 20MW moves from transport to radiation




Heat load on the inner divertor
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In the both cases, the peak heat load is less than ~6MW/mZ. y



