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Summary of progress since February 2010

 Last year we showed steady-state thermal-hydraulic and 
elastic structural analysis for four divertor concepts

 Plate, T-tube, Finger, Plate + finger

 Progress has been made for each concept:

 Pin fins added to the plate design, experimental verification

 Optimized T-tube slot and manifold

 Modified finger configuration, optimized jet layout

 Combination finger/plate concept design and fabrication

 More sophisticated analysis techniques have been used:

 Elastic-plastic analysis to push beyond 3Sm

 Transient analysis (“birth to death”)
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The plate divertor attempts moderately high 
performance with few parts and simple construction

 ~768 units total (16 sectors x 2 
up/down x 2 slots x 2 plates x 6 units)

 Inner (floating) steel cartridge

 Slot jet cooling

 Simple connection to a single 
external joint

Coolant flow paths
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Fabrication of the plate divertor
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Thermal hydraulic experiments demonstrate very 
high heat transfer for slot jet cooling with pin fins

In

Heated brass shell

 

 Pin-fins with ~260% more surface area 
improve cooling performance by 
~150%–200% while increasing 
pressure drop by ~40–70%

 h > 50 kW/(m2⋅K) is possible
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The T-tube divertor was developed in ARIES-CS

T. Ihli, A.R. Raffray, S. Abdel-Khalik, M. Shin, ARIES Team, Design 
and performance study of the helium-cooled T-tube divertor concept, 

Fusion Engineering and Design 82 (2007) 249–264.
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The T-tube design was optimized by tailoring 
the inlet channels and slot width

 Tapering reduces eddies

 More uniform slot flow results

 Further shape optimization is 
ongoing, accounting for spatially 
varying heat flux
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Non-Tapered T-Tube

Tapered T-Tube
By reducing the slot size 
from 0.5 to 0.45 mm, the 
heat flux limit increased 
from 11 to 13 MW/m2

The design window based on temperature limits 
allows up to 13 MW/m2

Uncertainty in 
temperature limit
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Note:  these calculations all assume constant heat flux.  
Spatially varying profiles will allow higher local peak values.

The design window based on 10% pumping power 
limit also allows up to 13 MW/m2
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The EU finger design was modified
 No transition joint between W and FS
 Transition is made at the end of the 

inlet manifold
 We also added a 1-mm inner shell for 

double containment
 Higher reliability is expected
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Detail on the new finger configuration

Armor (W)

Thimble(W-alloy)

Ring (W-alloy)

Fingers can be adapted 
into the manifold 
arrangement for the 
plate design concept
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q>10 MW/m2q<10 MW/m2

Fingers can be combined with slot jets for localized 
HHF handling capability and minimum units

 Cartridges with both slots 
and fingers can be combined

 Limit fingers to zones with 
the highest heat flux
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• Temperature, pumping power and stress limits are the major reason 
for heat flux limits on plasma-facing components

 Temperature is the most limiting constraint

• Optimizing the layout of the jets (jet sizes, number of the cooling jets) 
can improve heat transfer with acceptable pressure drop

• Iteration between thermal analysis and jet locations was performed 
to reduce the peak W temperature

600 ˚C

700 ˚C

600 ˚C

700 ˚C

Example of 
modified 
jet-layout

The jet configuration was optimized
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q”=15 MW/m2

q v=17.5 MW/m3

Tin/Tout=600/700 ºC
P=10 MPa
Vjet=332 m/s
H.T.C=9.257x104 W/m2K
Pp/Pth =9.9% 
Max.T armor=2243 ºC
Max. T thimble=1295 ºC
Min. T thimble=864 ºC

600 ºC
700 ºC

Velocity

Wall heat transfer 
coefficient

Temperature Temperature

The finger divertor can handle 15 MW/m2 without 
exceeding temperature or pumping power limits
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• Thermal loads: q”=15 MW/m2, qv=17.5 MW/m3

• Safety factor = Allowable stress(3Sm) / Maximum nodal stress 
(combined primary and secondary stresses)

• The safety factor must be >1 (to meet the ASME 3Sm code)

• The minimum safety factor is 0.3 in the armor and 0.9 in the thimble

Results of elastic stress analysis of the modified finger
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Principal design criterion for inelastic analysis

 In order to explore the limits of component performance, we 
do not restrict ourselves to elastic design criteria (i.e. 3Sm)

 One simple inelastic failure criterion is based on accumulated 
strain:

where                  is the maximum value of the principal strains 

accumulated over the operating life, and

is 1/2 of the uniform elongation.

 Other design criteria must be applied, as appropriate (e.g.,
ITER structural design criteria).  Ideally, full nonlinear time-
dependent analysis can provide full failure mode predictions.

 

εinelastic
principal < εallowable

BaseMaterial

 

εinelastic
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• Bilinear isotropic hardening 
material model is utilized

• Allowable plastic strain (50% of 
uniform elongation) for pure W is 
0.8% @270ºC and 1.0% @1200ºC.

• Operating temperatures for heat 
flux up to 15 MW/m2:
o VM-W (thimble + cylindrical ring): 

800 <T<1300 ºC
o Pure W (armor): 1000<T<2300 ºC
o WL10 (front plate): 

800<T<1300 ºC)

• The maximum plastic strain is 
~0.13% in the armor and 0.04% in 
the thimble.

Design criteria are satisfied by nonlinear stress analysis 
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Mechanical behavior of W in the divertor
1. Elastic-plastic stress analysis suggests temperature limits of W likely 

will be more limiting than yield strength.
2. The limited, non-overlapping temperature window is the problem.
3. Crack growth may also dominate; fracture mechanics work is ongoing.

Elastic 
analysis,
15 MW/m2

Elastic-
plastic 

analysis,
15 MW/m2
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Summary and future plans

1. Progress has been made on design and analysis of several 
advanced W/He divertor designs.

2. Our aim is to demonstrate a larger design window for 
plasma-facing components under “normal operating 
conditions” (15 MW/m2).

3. New efforts on elastic-plastic analysis are well underway.  
Efforts to model creep are also planned.

4. We will also quantify the limits under a select number of  “off-
normal” operating conditions.
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