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Summary of progress since February 2010

m Last year we showed steady-state thermal-hydraulic and
elastic structural analysis for four divertor concepts

Plate, T-tube, Finger, Plate + finger

m Progress has been made for each concept:
o0 Pin fins added to the plate design, experimental verification
0 Optimized T-tube slot and manifold
o Modified finger configuration, optimized jet layout

o Combination finger/plate concept design and fabrication

m More sophisticated analysis techniques have been used:
o Elastic-plastic analysis to push beyond 3S

0 Transient analysis (“birth to death”)
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The plate divertor attempts moderately high
performance with few parts and simple construction

e Inner (floating) steel cartridge
e Slot jet cooling

e Simple connection to a single
external joint

Coolant flow paths




Fabrication of the plate divertor
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Thermal hydraulic experiments demonstrate very
high heat transfer for slot jet cooling with pin fins
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The T-tube divertor was developed in ARIES-CS
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The T-tube design was optimized by tailoring
the inlet channels and slot width
m Tapering reduces eddies
m More uniform slot flow results

m Further shape optimization is
ongoing, accounting for spatially
varying heat flux
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The design window based on temperature limits
allows up to 13 MW/m?

By reducing the slot size
from 0.5 to 0.45 mm, the
heat flux limit increased
from 11 to 13 MW/m?2
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The design window based on 10% pumping power
limit also allows up to 13 MW/m?
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Note: these calculations all assume constant heat flux.
Spatially varying profiles will allow higher local peak values.




The EU finger design was modified

m No transition joint between W and F'S

m Transition 1s made at the end of the - / " Tyalam Ring

1inlet manifold

m We also added a 1-mm inner shell for
double containment

m Higher reliability 1s expected
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Detail on the new finger configuration

We-alloy

Thimble Armor (W)

Thimble(W-alloy)

ing (W-alloy)

Thimble

Brazing #2
Cylindrical
Ring

_ Eretag l Brazing #3

Fingers can be adapted
into the manifold
arrangement for the
plate design concept

PRI —p—— Ly JPRLIS [ P Sy :
(e AT 108 11 T3 A TET AT 1T ¢ DRT AT 1T+ AT AT $ T AT T+ 11 ¢ AT+ 1 DT T4 10
e —— -
- -

e r— -




Fingers can be combined with slot jets for localized
HHF handling capability and minimum units
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The jet configuration was optimized

* Temperature, pumping power and stress limits are the major reason
for heat flux limits on plasma-facing components

0 Temperature is the most limiting constraint

* Optimizing the layout of the jets (jet sizes, number of the cooling jets)
can improve heat transfer with acceptable pressure drop

* Jteration between thermal analysis and jet locations was performed
to reduce the peak W temperature

Example of
modified
jet-layout

700 °C 700 °C
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The finger divertor can handle 15 MW/m? without
exceeding temperature or pumping power limits
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Results of elastic stress analysis of the modified finger
* Thermal loads: q"=15 MW/m?, q,=17.5 MW/m?

* Safety factor = Allowable stress(3S,) / Maximum nodal stress
(combined primary and secondary stresses)

® The safety factor must be >1 (to meet the ASME 3S_ code)

* The minimum safety factor is 0.3 in the armor and 0.9 in the thimble
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Principal design criterion for inelastic analysis

m In order to explore the limits of component performance, we
do not restrict ourselves to elastic design criteria (i.e. 3S,)

m One simple inelastic failure criterion is based on accumulated

strain:
principal BaseMaterial
ginelastic < gallowable
where gﬁ'@lrﬂj%%ahaximum value of the principal strains
inelastic

accumulated over the operating life, and

chaseMatglighy of the uniform elongation.
allowable

m Other design criteria must be applied, as appropriate (e.g.,
ITER structural design criteria). Ideally, full nonlinear time-
dependent analysis can provide full failure mode predictions.
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Design criteria are satisfied by nonlinear stress analysis

* Bilinear isotropic hardening
material model is utilized

C: Static Structural (ANSYS
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Mechanical behavior of W in the divertor

1. Elastic-plastic stress analysis suggests temperature limits of W likely
will be more limiting than yield strength.

2. The limited, non-overlapping temperature window 1s the problem.

3. Crack growth may also dominate; fracture mechanics work is ongoing.
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Summary and future plans

1. Progress has been made on design and analysis of several
advanced W/He divertor designs.

2. Our aim 1s to demonstrate a larger design window for

plasma-facing components under “normal operating
conditions” (15 MW/m?).

3. New efforts on elastic-plastic analysis are well underway.
Efforts to model creep are also planned.

4. We will also quantify the limits under a select number of “off-
normal” operating conditions.
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