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Introduction

e Reduction of the divertor heat load

— Partially detached divertor (PDD) regime
* ITER operation senario, the design of Slim-CS

 Modeling of the PDD plasma

— 2D plasma-neutral coupling codes, e.g. SONIC and SOLPS, have been used.

* The 2D codes sometimes do not reproduce experimental results of the detached
plasmas.

» They take too much time per a simulation.

— which could be a serious problem to integrate core and SOL-divertor plasma
transport codes.

e Itis still unclear how the detachment front is “captured” in a divertor region.
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Typical experimental results of the PDD plasma distributio_n) :
G.F. Matthews, J Nucl Mater 220-222 (1995) 104 H.Kawashima etal, Nucl Fusion 49, 065007 (2009).



Introduction

 Motivation
— Can the PDD plasma be analyzed by a model that is simpler than the 2D models ?

* However, a 1-dimensional model, which is simpler than the 2D models, cannot reproduce
the PDD plasmas, because the PDD is a multi-dimensional phenomenon.

e Multi-Layer (ML) 1D model
— Intended to examine characteristics of the PDD plasma one-dimensionally
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— Features: M. Nakamura et al, to be published in J Nucl Mater (2011)
» the 1D axis is along the magnetic field, and the inner and outer tubes are put adjacent

each other.
— The inner tube should be detached, while the outer one should be attached.

» The cross-field energy and particle transport terms are approximated as source or loss
terms in the 1D transport equations of each tube.

 Purposes of this work
— to analyze the PDD plasma by using a simple model like the ML1D model ;
— to understand mechanisms to stabilize the detachment front in the divertor region



Model equations

« 1D plasma transport equation (for each tube)
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Model equations

1D diffusion equation for neutrals
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Preliminary results :simulation only of the inner tube

M.Nakamura etal, to be published in J. Nucl. Mater. (2011).

e Movement of a detachment front in the inner flux tube

— Conditions: ITER-like SOL-divertor plasma

» The cross-field heat flux term in the divertor region is an input parameter
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Under these assumptions, we performed 1D plasma simulations
only for the /nner flux tube.




e Simulation results: time evolution ofn & T

Red curves: t = 0, greed: 0.59, blue: 1.2, pink: 1.8, turquoise: 2.5,
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® The cross-field heat flux in the divertor region can prevent the

detachment front from moving upstream.

M.Nakamura etal, to be published in J. Nucl. Mater (2011).



e Position of the detachment front in a steady state
— as a function of the auxiliary neutral density at the divertor plate
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® The operation range of the neutral density at divertor plate such that the
the detachment front in the divertor region is so narrow.
v The detachment front in the divertor region is thermally unstable.



Simulation by the ML1D model

e Simultaneous simulation of the inner/outer tubes 1:
Effects of the cross-field heat flux

— Conditions: ITER-like SOL-divertor plasma
 We used the model cross-field heat flux
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Under these assumptions, we performed 1D plasma simulations
both for the inner and outer flux tubes
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Simulation results: time evolutionsof n & T
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® In the case with the cross-field heat flux in the divertor region,
it prevents the detachment front moving upstream.
v’ agreeing with the previous simulation study only of the inner tube.
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e Position of the detachment front in a steady state
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- D,=0 is assumed at the divertor region.
- The non-zero x, and D, are given in the SOL region.

® In the framework of the ML1D model, even in the case without the
cross-field heat flux in the divertor region, the neutral particle
operation range in which the detachment front is stagnated in the
divertor region is broadened.

® When the cross-field heat flux is introduced in the divertor region,

such neutral operation range is extended further. "



 Discussion 1: effect of the cross-field transport in the SOL region

The energy balance of the control volume around the detachment front (DF)
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dK/dt < O : the DF moving upstream
dK/dt > 0O : the DF moving downstream

. Because of the detachment near the divertor
plate in the inner tube and the parallel heat
conductivity, the upstream SOL temperature is

. The difference in the upstream temperatures
between the inner and outer tubes is decreased.

. The outward cross-field heat flux from the inner
tube to the outer tube is decreased in the SOL

. The parallel heat flux from upstream into the DF
region is increased because of the energy
conservation in the SOL region.
A 5. dK/dt becomes zero or positive, and

the DF stops moving upstream.

[ The heat transport in the upstream SOL region affects

the stability of the DF in the divertor region.
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 Discussion 2: effect of the cross-field transport in the div. region

The energy balance of the control volume around the detachment front (DF)

d_K B jq 4s + qu- \ds __HQ ‘dV dK/dt < 0 : the DF moving upstream
dt o I \_L, loss

dK/dt > 0 : the DF moving downstream
iIncreased
Schematic picture of T in the ihper/outer tubes

1. As the DF moves upstream, difference
in the temperature between the inner
and outer flux tubes is increased in the
divertor region.

2. The inward cross-field heat flux into
the control volume around the DF in
the inner tube is increased.

\ 3. dK/dt becomes zero or
positive, and the DF stops
moving upstream.

Inner tube

. >
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The cross-field heat transport in the downstream divertor region

also affects the stability of the DF in the divertor region.
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Simulation by the ML1D model

e Simultaneous simulation of the inner/outer tubes 2:
Effects of the cross-field heat & particle flux

— Conditions: ITER-like SOL-divertor plasma
* Not only the model cross-field heat flux but also the model particle flux

in the divertor region
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e Simulation results: time evolutionsof n & T
Red curves: t = 0, , blue: 1.2, pink: 1.8, turquoise: 2.5,
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® The cross-field particle flux in the divertor region, as well as
the cross-field heat flux, prevents the detachment front from

moving upstream.
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 Discussion 3:
effects of the cross-field particle transport in the divertor region

The cross-field particle source term in the inner tube

2e+24
1.5e+24
le+24
Se+23
0
-oe+23
- -le+y2d
-1.5e+24
-2e+24

2e+24
1.5e+24
le+24
oe+23

¥

¢ :3.'
EDdet |:1.'|"|"I .'5:|

St got (1/m°/s)

-2e+24

1 |
-D, = 0.5 m?/s

-

-5e+23 |
L le+24 b

-1.5e+24

/0 75 B0

85

X (m)

Around the detachment front

S, <O0:

®The cross-field particle transport is

outward.
» Because of the density peaking
due to ionizations
» Decrease in the density peaking
and energy loss due to
recombinations.
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® The cross-field particle transport in the divertor region prevent the

detachment front from moving upstream.
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Summary

Simulation study on behaviors of the detachment
front in a divertor plasma

— We proposed the multi-layer 1D model to analyze the PDD
plasma one-dimensionally.

— By using this model we found that

e the cross-field heat transport in both of the upstream SOL
and downstream divertor regions affects the stability of the
detachment front in the divertor region, and that

e the cross-field particle transport in the divertor region also
affects the stability of the detachment front.

~

Our simulation results show that

In order to establish operation conditions of the detached
plasma regime, it is crucially important to measure and
model the cross-field transport coefficients in the

SOL-divertor plasma.

\_ /
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