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Background 
Fusion energy MUST respond to immediate expectation

for global environmental and energy problem.

Fusion technology is far from maturity as energy plant.

Fusion needs an ENGINEERING machine
-to be immediately constructed with current  technology
-to be possible to show the net energy output by fusion

Objectives
to propose a possible next step option
to be immediately start, 
to be justified as an option in carbon-free energy systems, and
to provide engineering maturity for fusion technology.

Introduction
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Environmental  
Not only carbon-free, but reduces carbon dioxide emission

to  replace fire powered stations is needed, not to compete
with fission or renwerables.

Providing substute fuels are more important than electricity

Electricity systems 
Renewables (solar, wind) will increase, and large stations
are required to stabilize the grid.
Dispersed power (battery, fuel cells) will increase.
Large starting power and unit capacity are not welcome.

Expected Fusion Role (if possible)
Institute of Advanced Energy, Kyoto University

Fusion must find its time and place



Fuel Production Energy Balance

cellulose：（C6H10O5）n/6+ n/6H2O → nH2 + nCO – 136n [kJ]
lignin: (CH1.4O0.3)n + 0.7nH2O → 1.4nH2 + nCO –136n[kJ]

Biomass
(1kg) + H2O

Fusion Energy （Heat，900℃）

H2,CO

2H2 + CO → -CH2- + H2O  + 160
[kJ]

Fischer-Tropsch reaction

CO  + H2O   ⇔ H2 +  CO2 +  32 [kJ]Shift Reaction
hydrogen

Synthetic oil
(Diesel) Substitute of  OIL (0.5 litter)

endothermic

Waste heat

Carbon Neutral

8.2MJ

15.6MJ

24.2MJ
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Waste /usable



Fusion Energy Balance

◯Large Q (>20) needed for DEMO because of poor 
generation efficiency.

Net plant 
energy 
output

Plasma 
Heating
Energy

Pcd

Fusion
Energy

Multiplication
Q 

Blanket
Output

Generation
Efficiency
η ~0.33

Conversion
Efficiency
η 2.0~2.7

○If fusion plant is used for fuel production, only a fraction 
is regarded to be converted to electricity for plasma heating.
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Fusion heat 

Energy Conversion efficiency
Institute of Advanced Energy, Kyoto University

Thermal cycle
Loss (40~70%) 

electricity hydrogen
Electrolysis
Loss

Fusion heat IS process hydrogen

Chemical cycle
Loss(50%)

water

Fusion heat gasification Hydrogen+CO

water

Biomass
(with enthalpy)

Chemical cycle
Loss(400C) FT oil



High Plasma Q not required
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generation
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Negative power

ITER

DEMO

Driven and pulsed 
operation is acceptable

High temperature blanket
To be developed.

High output temperature is 
required for gasification 
efficiency is required

Biomass Hybrid Concept

Net 
6Pf

Net 
8Pf
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Fusion-biomass hybrid reactor for fuel production

Rp=5.2m Gasification
reactor

Biomass 

Fuel Pn ~1MW/m2

Neutron 
wall load

Major radius
Small

Hydrogen

≧900oCHigh temp. 
extraction

High η
Pb-17Li blanket with SiC cooling panel

Blanket for Biomass processInstitute of Advanced Energy, Kyoto University

IHX 



Tokamak Parameters
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Neutron flux average 0.7 MW/m2 (max 1.4 MW/m2 )
Neutron fluence (< 0.1MeV) to the CS reaches 1×1022 n/m2 a
reaches in 40 years 
No vacuum vessel. Cryostat is regarded as boundary.

Radial build Institute of Advanced Energy, Kyoto University



Heat flux

1000℃
LiPb 

He :8MPa, 300oC, 40m/s

Plasma

1000 oC

LiPb

35MW/m3 21MW/
m3

Blanket Structure

LiPb-RAFM blanket with SiC cooling panel
・Actively cooled  SiC panel to control heat transfer 
・isolate outer RAFM  vessel structure
・obtain high   temperature LiPb  for heat
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SiC/SiC cooling panel
SiC cooling panel

・Actively cooled SiC 
panel to control
heat transfer 

・isolate outer RAFM 
vessel structure

・obtain high  
temperature LiPb 
for heat

Institute of Advanced Energy, Kyoto University

Blanket parameters

Heat flux to the FW 0.2 MW/m2

Neutron flux from the plasma 0.5 MW/m2

Boundary temperature at the 
LiPb/SiC interface

1000 oC

He temperature at F82H 
channel

350 oC

He temperature at SiC
channel

850 oC

Heat transfer coefficient of He 
coolant at F82H channel

10000 W m-2 K-1

Heat transfer coefficient of He 
coolant at SiC channel

7000 W m-2 K-1

Thermal conductivity of F82H 33.3 W m-1 K-1

Thermal conductivity of SiC 20 W m-1 K-1



複雑形状の接合Fabrication R&D for SiC cooling panels
Institute of Advanced Energy, Kyoto University



LiPb circulated >900゜C

SiC module

Installed in 900 ゜ C vessel

IHX heat transfer from LiPb to He

Loop operated >900 ゜ C
Only in the test vessel

ヒーティングコイル

アルミナ管

Institute of Advanced Energy, Kyoto University



LiPb/He dual coolant loop
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Heat transfer in SiC/LiPb module
Institute of Advanced Energy, Kyoto University



biomass

steam

Liquid metal

Concept of the reactor

Diameter:~3.5m
Reactor tube：29500

Liquid metal path
900℃

Gas product

Fusion
reactor

cellulose rignin

Reaction 
heat(kJ)

0.29 0.41

Reaction 
time(s)

60 60

Assumed biamass:6Mton/year
(cellulose 70%,lignin 30%)

10m

Biomass/product path path

Concept of the biomass reactor
Institute of Advanced Energy, Kyoto University



CO  +  H2O   ⇔ H2 +  CO2

CO2：90kg/s
CH4：1.5kg/s

biomass
63kg/s

Preheat

water
28kg/s

residue
10kg/s

Gas separator

H2
9.0kg/s

water
25kg/s

Shift reactor

Fusion reactor：500MW

Hydrogen 
Liquid fuel

gas
H2
CO
CO2
CH4

5.3kg/s
39kg/s
29kg/s
1.5kg/s

300℃

Heat exchange
reactor

With High Temperature Blanket

No thermal cycle 
used.
No waste heat
Discarded.

Hybrid Fusion power plant
Institute of Advanced Energy, Kyoto University
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High temperature blanket is being developed .
(However, pressure and steady-state requirements are not.)
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Tritium Balance in plant
biomass 

HEX

Tritium
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LiPb Pb

Recovery
System 1

Tritium
Recovery
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ReactorPlasma
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-
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Permeation

Recovery

Consumption
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IHX
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ReactorPlasma

T
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PermeationConsumption

Stock
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Stock
Stock
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Stock

[mol/s] Recovery

Blanket

4.7E-04
Generation Permeation

IHX permeability , tritium confinement of
Entire power plant needs maturity and
Demonstration for social understanding.

Net TBR 1.05

n
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T3-OS14 
Yamamoto

Environ-
mental 
release

T3-PS2.4 
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Fusion-biomass hybrid as carbon recycle

Large amount of biomass is discarded
- burnable garbage
- agricultural byproduct
- woods
- (plastics)

Combustion
Landfill

CO2
emission

replacing fossil reduces
CO2 emission 

Conversion to
Fuel

External
Energy
Source
(FUSION)

use

Reduction of 
fossil 

consumption

(regarded 
as neutral)

Institute of Advanced Energy, Kyoto University



Tritium Recovery Process 
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Target recovery ratio >35% in the LiPb stream
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-Recovery ratio determined from the contamination of product.
-Requirement is a function of permeability through IHX

assumed
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Yearly change of tritium concentration
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Change on the tritium concentration in the atmosphere 
during prolonged operation is analyzed.

5.7 km west

100 km west

•Tritium concentration increase for about 60 years on land.
•Tritium concentration on the sea surface is low and dose 
not show accumulation

Emission rate: 1.35x1014 Bq/year
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Operating time:  1 yearOperating time:  2 yearsOperating time:  4 yearsOperating time: 10yearsOperating time: 20 yearsOperating time: 40 yearsOperating time: 60 yearsOperating time:80yearsOperating time: 100 years

•Considerably increases for 20 years
•Still negligible from dose, but easy to detect.

- If 100 plants operated 100 years?

Emission rate: 1.35x1014 Bq/year

Tutorial course

Accumulation in the environment

Annual emission accumulates in the environment



Future Energy Systems
Institute of Advanced Energy, Kyoto University

FIRE

NUCLEAR
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FC
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DC Microgrid

Solar cell

Fuel (H2 / CO)

Electricity will be powered by
Carbon-free sources

Fusion

Day peak will be supplied by
Battery and fuel cells.
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Fusion will be  started by 
night  sources



JA DEMO

1980              2000               2020               2040                2060

Targetted to 2050 comercial electricity

Fusion Energy Development
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EU fast DEMO

ＩＴＥＲ(2010)

Competition to demonstrate
Fusion power

→demonstration possible 2038

TBM

ITER

30 m

Bio Hybrid

Smaller than ITER
follows ITER construction

Oil product Demo before 2030

“Plan B” of Fusion
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Fusion as  biomass hybrid

○Fusion –biomass hybrid may demonstrate fusion energy 
earlier than pure fusion electricity.
・small power generation has better market chance.
・cost requirements for the product (hydrogen, oil) may be  

easier  (eventually. Depends on oil price and carbon tax)

○ Low Q plasma can generate net energy product
・realistic target with current plasma technology
・earlier requirements for plasma, divertor and first wall
・smaller plant of R=～5m scale 
・smaller device, smaller cost and project risk and tritium 

needs

○High temperature blanket/divertor are realistic challenge 
・SiC-LiPb blanket being developed.
・Biomass-hydrogen conversion in bench scale test.

Institute of Advanced Energy, Kyoto University



Strategic consideration

○Fusion plays minor, but inevitable contribution
・Serves as heat source for fuel production processes
・Fusion can improve in temperature by blanket development.
・There is few High temperature carbon-free heat
・ Fusion has less limitation in resource, site, environment, 
and nuclear proliferation concern than fission.  
→suitable for deployment in developing countries.

○fuel application provides fusion a better chance.
・Eventually larger market than electricity
・Global  demands for fuel and its supply capability.
・Fuel production does not require stable steady state.
・Blanket and energy plants can be developed independently.
・Possibly slower demand change than electricity.
・Fits the entire carbon-free energy systems better.

Institute of Advanced Energy, Kyoto University



• Fuel production from biomass has larger market.
• Substituting Oil contributes CO2 reduction
• Biomass-Fusion  Hybrid  will give a good chance for 

technology maturity of fusion power, and more 
attractive feature as energy

• Hybrid Device smaller than ITER and will not have to 
wait for ITER success.

• Applicable for ICF, stellarator and other confinements.

Conclusion

Fusion can respond to global environment and 
resource problem in the near future!

Institute of Advanced Energy, Kyoto University


