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Introduction
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Background

Fusion energy MUST respond to immediate expectation
for global environmental and energy problem.

Fusion technology is far from maturity as energy plant.

) Fusion needs an ENGINEERING machine
-to be immediately constructed with current technology
-to be possible to show the net energy output by fusion

Objectives

to propose a possible next step option

to be immediately start,

to be justified as an option in carbon-free energy systems, and
to provide engineering maturity for fusion technology.



Expected Fusion Role (if possible)
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Environmental

Not only carbon-free, but reduces carbon dioxide emission
to replace fire powered stations is needed, not to compete
with fission or renwerables.

Providing substute fuels are more important than electricity

Electricity systems
Renewables (solar, wind) will increase, and large stations
are required to stabilize the grid.
Dispersed power (battery, fuel cells) will increase.
Large starting power and unit capacity are not welcome.

) Fusion must find its time and place



Biomass
(1kg)

cellulose: (C¢H,,05) 6+ N/6H,0 — nH, + nCO — 136n [kJ]

Fuel Production Energy Balance
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Fusion Energy (Heat, 900°C) | 8.2MJ

.

= [H,c0

endothermic

lignin: (CH, ,0,.)n + 0.7nH,0 — 1.4nH, + nCO —136n[kJ] | 24.2MJ

Shift Reaction CO +H,0 & H, + CO, + 32 [kJ] == | Waste heat

Fischer-Tropsch reaction

2H, + CO —

d

hydrogen L

Synthetic oil

(Diesel)

[kJ]

Carbon Neutral

-CH,-+ H,0 + 160

Waste /usable

15.6MJ

Substitute of OIL (0.5 litter)




Fusion Energy Balance
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Plasma | ety
Fusion Blanket energy

Heating ‘ Energy
Output
Energy Multiplication‘ Pt output
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. Conversion‘
x‘/ Generation =
Efficiency = 120~27

n ~0.33

(OlLarge Q (>20) needed for DEMO because of poor
generation efficiency.

OIf fusion plant is used for fuel production, only a fraction
IS regarded to be converted to electricity for plasma heating.



Energy Conversion efficiency
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water
Fusion heat FT’ electricity i » | hydrogen
Thermal cycle Electrolysis
Loss (40~70%) Loss
water

Fusion heat H IS process \ » | hydrogen

Chemical cycle

Biomass
! Loss(50%)

(with enthalpy)

Fusion heat b\‘} gasification ‘—’ Hydrogen+CO
“—

Chemical cycle -y
Loss(400C) FT oil
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Biomass Hybrid Concept
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Blanket for Blomass process
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Fusion-biomass hybrid reactor for fuel production
High temp. =900°C
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Pb-17Li blanket with SiC cooling panel



Tokamak Parameters
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ITER GNOME
Maijor radius R, 6.2m 52m
Minor radius a, 2m 1.7m
Aspect ratio A 3.1 3.1
Plasma volume |V, 837 m3 547 m3
Plasma current | |, 15 MA 10.4 MA
Toroidal field B, 53T 44T
Electron
temperature <T,> 8.9 keV 13 keV
confinement HH,, (1.0) 14
Normalized
beta Bn (1.5) 3.1
Greenwald
density fow (0.7) 0.54
Fusionpower |Py, | °200(250) | 304 Mw
MW
Current drive Pco 73 (20) MW 61 MW
Neutron flux P 0.57 MW/m2 . 0 .".1.8 -




R a’gt!tt%’ !f vlﬁéc!zj g&rg)}, Kyoto University

TF BLK Plasma BLK  Shield
CS 60 Shield g9 SOL 340 SOL go Shield 919 TF

150 60 20 20 60 60

Neutron flux average 0.7 MW/m? (max 1.4 MW/m?)

Neutron fluence (< 0.1MeV) to the CS reaches 1 X 10%2 n/m?a
reaches in 40 years

No vacuum vessel. Cryostat is regarded as boundary.
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LiPb-RAFM blanket with SiC cooling panel
- Actively cooled SiC panel to control heat transfer
-isolate outer RAFM vessel structure
-obtain high temperature LiPb for heat



%) SiC/SiC coolin
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Blanket parameters

Heat flux to the FW 0.2 MW/m?2
Neutron flux from the plasma 0.5 MW/m?
Boundary temperature at the 1000 °C
LiPb/SiC interface

He temperature at F82H 350 °C
channel

He temperature at SiC 850 °C
channel

Heat transfer coefficient of He 10000 W m=2 K1
coolant at F82H channel

Heat transfer coefficient of He 7000 W m=2 K-1
coolant at SiC channel

Thermal conductivity of F82H 33.3 W m' K1
Thermal conductivity of SiC 20 W m1 K-

g panel

SiC cooling panel

- Actively cooled SiC
panel to control
heat transfer

-isolate outer RAFM
vessel structure

-obtain high
temperature LiPb
for heat




Fabrication R&D for SiC cooling panels#®
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LiPb circulated >900°C
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Loop operated >900 ° C
Only in the test vessel

IHX heat transfer from LiPb to He

Installed in 900 ° C vessel



LIPb/He dual coolant loop
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Heat transfer in SIC/LIPb module
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Concept of the biomass reactor
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Assumed biamass:6Mton/year cellulose rignin
(cellulose 70%,lignin 30%) Reaction 0.29 0.41
heat(kJ)
[ biomass Reaction 60 60
time(s)
@ \<E<— steam
Fusion 10m al =
ree}ctor |
Liquid metal Liquid metal path — —

L{o00°c> 1| |

Diameter:~3.5m /‘ —/— ||

Reactor tube:29500] | Gas product

Concept of the reactor Biomass/product path path



Hybrid Fusion power plant
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Hydrogen
Liquid fuel

reactor

Fusion reactor: 500MW

Heat excha

With High Temperature Blanket residue

10kg/s

CO + H,0 & H, + CO,

Gas separator 7L>
n

CO,:90kg/s
CH,:1.5kg/s

Shift reactor

used.

No thermal cycle

No waste heat
Discarded.

'HZ_EB'I@S_
CO 39kg/s
CO, 29kg/s
CH, 1.5kgl/s




Gasification of Cellulose
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>95% carbon was converted to C1 gases and H2.
This conversion efficiency is practical level.
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High temperature blanket is being developed .
(However, pressure and steady-state requirements are not.)




Tritium Balance in plant
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LiPb biomass
Net TBR1.05 0724 miss 0. 652 m’s
/// ‘\ ﬁ
/ n
Plasma Blanket Reactor
| iogzu(;zptlbn Generation Permeation Permeation
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Yamamoto Recovery Recove
System 1 System
[mol/s] Recovery Recovery Envi
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4.7E-04 . 2.3E-08 mental
- release
Recovered tritium

Stock IHX permeability , tritium confinement of #

Entire power plant needs maturity and T3-PS2.4
S1ocK i i i Shibata
2 3E-05 Demonstration for social understanding.
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Tritium Recover

at 500°C

Vacuum Sieve Tray

Blanket

reruirement
@ Inventory control
@ Tritium in hydrogen

product

y Process

n27°Dy
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41°

= Recovery ratio 45%

M(¢) [mol] :gas release
M, [mol] :dissolved tas

s1] :diffusion coefficient
:time
:radius of the droplet
:depth

D [m?
t [s]

o [m]
| [m]




Fusion-biomass hybrid as carbon recycle
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Large amount of biomass is discarded
- burnable garbage A
- agricultural byproduct
- woods g

-(plastlci) Q; Co[nbté?tlilon
andarl { ;f

External co,
Energy Conversion to
(Sougc% )‘ V|:ue|| use emission
FUSION
\V Reduction of ' (regardea
fossil as neutral)
consumption

replacing fossil reduces
CO, emission




Tritium Recovery Process
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-Recovery ratio determined from the contamination of product.
-Requirement is a function of permeability through IHX

=% Target recovery ratio >35% in the LiPb stream



Yearly change of tritium concentration

Change on the trittum concentration in the atmosphere

during prolonged operation is analyzed.
Emission rate: 1.35x10'4 Bq/year
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Atmosphere HTO concentration after 100 years operation. 100 km west
*Tritium concentration increase for about 60 years on land.
*Trittum concentration on the sea surface 1s low and dose
not show accumulation



Accumulation in the environment *

Annual emission accumulates in the environment
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Considerably increases for 20 years 100 km west

Still negligible from dose, but easy to detect.
- If 100 plants operated 100 years?



Future Ener
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Large scale grid

v
DC Microgrid
Sofardalf”™ L
: Fuel . |
Cells Battery

stems
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Load
following
power
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NUCLEAR
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0 6 12 18 24(h)

Electricity will be powered by
Carbon-free sources

Day peak will be supplied by
Battery and fuel cells.



Fusion and grid
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Office Pffice

Indirectly supplied

by fusion Fusion will be started by

night sources
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®) Fusion Energy Development
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Fusion as biomass hybrid
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OFusion —biomass hybrid may demonstrate fusion energy
earlier than pure fusion electricity.
-small power generation has better market chance.
-cost requirements for the product (hydrogen, oil) may be
easier (eventually. Depends on oil price and carbon tax)

O Low Q plasma can generate net energy product
- realistic target with current plasma technology
- earlier requirements for plasma, divertor and first wall
- smaller plant of R=~5m scale
- smaller device, smaller cost and project risk and tritium

needs

OHigh temperature blanket/divertor are realistic challenge

- SIC-LiPb blanket being developed.
- Biomass-hydrogen conversion in bench scale test.



Strategic consideration
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OFusion plays minor, but inevitable contribution
-Serves as heat source for fuel production processes
- Fusion can improve in temperature by blanket development.
There is few High temperature carbon-free heat
- Fusion has less limitation in resource, site, environment,
and nuclear proliferation concern than fission.
—suitable for deployment in developing countries.

Ofuel application provides fusion a better chance.
- Eventually larger market than electricity
-Global demands for fuel and its supply capability.
 Fuel production does not require stable steady state.
-Blanket and energy plants can be developed independently.
- Possibly slower demand change than electricity.
*Fits the entire carbon-free energy systems better.



Conclusion
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Fuel production from biomass has larger market.
Substituting Oil contributes CO, reduction

Biomass-Fusion Hybrid will give a good chance for
technology maturity of fusion power, and more
attractive feature as energy

Hybrid Device smaller than ITER and will not have to
wait for ITER success.

Applicable for ICF, stellarator and other confinements.

Fusion can respond to global environment and
resource problem in the near future!




