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Research information on tritium behavior in liquid breeders
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Comparison of tritium solubility and diffusivity among Li, Li-Pb, Flibe

Tritium partial pressure [Pa]
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Fig. A5 Tritium Diffusivities in Tritum Breeding Materials

Li Lio.17Pbo g3 Flibe
vaporn pressure(800K) 2.1Pa 0.37Pa 0.011Pa
latent heat 140kJ/mol 180kJ/mol 205kJ/mol
viscosity 3.6x107kgs/m?| 2.0x10 *kgs/m?| 1.5x103kgs/m? 3
density 0.48g/cm’ 9.5g/cm’ 2.0g/cm®
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Recovery and control of tritium in Li,BeF,

The largest problem on recovery of tritium in Flibe is TF generation.
Two experiments are performed recently related with FFHR-2:

1. Redox control experiment in Flibe
Whether the reaction 2TF + Be = BeF, is possible or not?

The possibility of conversion of TF to T, by a Be rod inserted in
fluidized Flibe is tested in JUPITER-II project.

2. Recovery of TF and T, from Flibe is experimentally proved by He
gas purge including H,(D,).
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TF reduction by Redox control of Flibe
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Tritium transfer between Flibe-Ar+H, or Ar gas
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Tritium release from Flibe under neutron irradiation
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Good fitting is obtained between tritium (TF+HT) release experiment (solid line) and
diffusion-limiting tritium desorption rate equation (chained line).

This means that TF or HT (T,) generated in Flibe breeder can be recovered direct contact
with He purge gas.

S. Fukada, et al., Fus. Sci. Technol., 52 (2007) 677.
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Design study of Flibe/He loop for FFHR-2 self-coolant system
Flibe wm 6.5m?/s (12.8t/s)

power : 3GW,
tritium generation rate : 4.5MCi/day
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T concentration in Flibe (partial pressure) : x;,=0.013ppm (p;=760Pa)
T removal ratio from Flibe per once through : 1/(5x10°)

A. Sagara, et al., Fus. Eng. Des., 83 (2008) 1690.
S. Fukada, et al., Fus. Eng. Des., 85 (2010) 1314. 8
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Recovery of tritium from Li

Y absorption method was previously proposed, but no experimental
proof has ever been presented, because Y is much sensitive to
impurities of O and N.

We performed the following experiments and calculations:

(1)Development of HF treatment technique to remove oxide formed
on Y surfaces

(2) Experiment on recovery of 1ppm tritium from Li by HF-treated Y
particle

(3) Experiment on recovery of H or D from fluidized Li by HF-treated
Y plate

(4)Design of Y hot trap for Li loop of IFMIF-EVEDA



Equilibrium pressure of H in Li and Y [Pa]

Dissociation pressure of YH, and 1ppm T in Li
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Y condition to recover tritium in Li down to 1 ppm
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and operation condition of Y hot trap

* There is no sufficient research on removal of hydrogen (tritium)<lppm in Li.
* Thisis because the oxide on formed on Y inevitably interferes hydrogen (tritium) removal in Li.

A new technique of HF treatment that we proposed in FED is tested to improve H absorption
performance at the Y trap temperature (250-300°C).

________________________________________________________________________________________________________________________________
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HF-treated Y before H absorption HF-treated Y after H absorption
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Experiment of T recovery by Y plate from stationary Li

eAfter T of 0.12ppm is generated in Li by neutron irradiation, Li contacts with a Y plate.
Then, the T amounts dissolved in Li and Y are detected by a liquid scintillation counter after H,0 and
HNO, dissolution.
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Finding: Temperature [K] Y. Edao et al., Fus. Eng. Des., 85 (2010) 53
e HF-treated Y can absorb T dissolved in Li down to 0.1ppm at 300°C.

 Recovery ratio from Li to Y is determined as a function of temperature and contact time.



Japan-US Ogawa workshop (Feb 22-24, 2011, NIFS)

IFMIF-EVEDA achievement in FY 2009-2010
Experiment of H recovery by Y plate from agitated Li
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Summary of experimental results:
*Y can absorb H isotopes efficiently even at 300°C by using HF-treatment technique.

*Overall H absorption rates are independent of rotating rate.

*Absorption mass-transfer coefficient is independent of the inlet H, concentration. 13
*The above results support the idea that the surface dissociation reaction limits the overall absorption rate.
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De5|gn and construction of Y trap for IFMIF/EVEDA Li loop

N|trogen trap is deS|gn by Terai’'s group
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S. Fukada et al., IFMIF-EVEDA 3™ workshop 2010, Madrid CIEMAT



Japan-US Ogawa workshop (Feb 22-24, 2011, NIFS)

LiPb blanket designs

Inertial fusion reactor,

* Li,c gPbg, , (Li;;Pbg;) eutectic alloy  kovo-rast
— High TBR |
— Low reactivity with N, C, O
— Simplified blanket structure (low m.p.)
* Tritium breeding blanket

— Self-sufficient tritium cycle
— Highly-efficient heat recovery
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Tritium-related study of Li-Pb blankets

 We determined solubility and diffusivity of H,
D (and T) in Li,,Pbg, eutectic alloys.

 We determine chemical state and isotope

effects of H isotopes dissolved in Li-Pb eutectic
alloy.

 We design a system for tritium recovery from
Li-Pb loop from Koyo-fast inertial fusion
reactor

16
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Permeation of single component H,D or dual component H+D through
Li,Pbg, are determined by a permeation method.
Solubility, diffusivity and permeability are determined at the same time from

fitting experiment and calculation.
Experimental conditions

Mass flow meter Glove-box Temperature 573-973 K

A schematic diagram of the experimental apparatus

O H, partial pressure ~ 103-10°Pa
QO A+ D, partial pressure = 103-105Pa
Gas punfication H,, D, flow rate 5 cm3/min
Ar flow rate 5 cm3/min
Ar
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Dependences of pHZ upstream L'on JLipb-H
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Isotope effects among H,D,T

The ratio of H and D permeability through Li-Pb, P, and P
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*H permeability is around 1.4 times larger than D one as the isotope effect independent of the
H:D composition ratio.

*The isotope equilibrium of H,+D,=2HD is achieved at the downstream side.
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Y. Edao, et al., Proc. tritium conference (2010)
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15t principle numerical simulation for diffusion of H in PbLi
D. Masuyama, et al., Chem. Phys. Let., 483 (2009) 214-218
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(5) Blanket T recovery design

Tritium extraction and Heat exchanger system
for Koyo laser fusion reactor

Li,Pbg, heat exchanger Total power 1 GWt
W Li, Pby, inlet temp. | 300 °C
D. addition . generator
" permeadon Li,Pby, outlet temp. 500 °C
_(trm um | :
| extraction ==steam turbin NJ Li,(Pbg, mass flow rate | 18.4 t/s
AN T generation rate 1.43 MCi/day
r T concentration in Li;(Pbg, | 8 6x10°
fuel evacuation T/Li,Pby,

water v

T partial pressure in LiPb 1.8x103 Pa
condenser <:
Heat transfer coefficient of heat 5.0x103 W/m2K
coolin g exchanger
water Surface area of het exchanger 690 m2
D+T fuel pe| let Logarithmic temperature 200 °C

difference in heat exchanger

500°C injection

Estimated T leak rate 255 Ci/day

» Tritium transfer
Rate-determining step | T permeation

Li,Pbg, loop for Laser fusion reactor and steam Rankine cycle through tube wall

Integration is based on design of compositions for heat and T recovery. 21
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Li-Pb Liquid wall concept for inertial fusion reactor
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(5) Blanket T

MFE/IFE system modeling workshop, Jan 31- Feb 1, 2011, Idaho Falls

recovery design

Tritium permeation rate through steam generator of laser fusion reactor
system as a function of tritium concentration in Li-Pb
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Calculation under the condition where py, ., is negligibly small.
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Conclusions on LiPb

Permeability, diffusivity and solubility of H and D in Li ,Pbg, alloy
are determined.

Isotope effects of solubility and diffusivity are correlated by
harmonic oscillation model and vibration energy in solution site
and transient site.

The energy determined so is consistent with 15 principle
numerical simulation for H behavior in Li;Pbg, eutectic alloy.

When H and D mixtures are present simultaneously, their
permeations are determined by the ideal solution model, and the
solubility and diffusivity are determined in a similar way to the
single component of H, or D,.

Li activity and H energy in trap site for solubility in arbitral
composition of Li+Pb alloys are correlated by the linear addition
rule of Li and Pb atoms.

Hydrogen permeation through Li,.Pbg, flow surrounded by solid
walls is determined by the conjugated system of flow-wall-gas

purge.
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