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Background: Plasma Facing Components (PFCs)

have Implications for Tritium Fuel Cycle

 Today’s device PFC need: # discharges to reach

. safety limit in ITER
—Mechanical strength Y
WiBe

—Resistance to large T il
fransients g

—Favorable erosion/
radiation characteristics |
toward core plasmo all-W |

* To date, largely met by
carbon PFC

e Carbon not (necessarily)
in plans for future device
PFCs J. Roth et al., JNM (2009)

Erosion
Tritium
Dust




* Infroductory material

e 2009 DoE Joint Facilities Milestone (JFM-09):
Hydrogenic Retention in PFCs*

—DIlI-D, C-MOD, NSTX
—Similar particle balance methods compared

—Variety in configurations
e divertor pumping (CMQOD, DIIID) & un-pumped (NSTX)
* PCF material: CMOD=Mo/W:; DIII-D=C; NSTX=C + Li
* Heating methods: RF; NBI; ohmic-only
* Relation to future devices

— Any physics that extrapolatese

*http://www.science.doe.gov/ofes/performancetargets.shiml



Overview: What We Know from Slurry of Studies

e Research conducted on most tokamaks

—ToreSupra, JET, JT-60U, TFIR, TRIAM1, CMOD, DIII-D,
ASDEX-U, NSTX, TEXTOR, etc.

—Materials: graphite, W, Li, Be, others

—Detailed results on:
e erosion rates, retention mechanisms, particle balances, etc.

e But still a “hot topic”

— 30+ presentations on retention issues at PSI-2010 next
week

—(2) invited talks on material in this presentation
* Why? It's complicated...




Overview: Retention mechanisms in current devices

* Retention mechanisms broken into (2) main groups

—Shot-term: reversible, sa

—Long-term: non-reversib
e Short-term mechanisms

urating; loosely bound

e, nhon-saturating, fightly bound

—Implantation, surface absorption (tfemp. dependent)
—Usually out-gasses after discharge (~ up to days-weeks)

* Long-term mechanisms
— Co-deposition

—Deep implantation (in main chamber; usually small)

—Does not come out without effort (i.e. very high T,
disruption cleaning, etc.

)




Main Findings of DoE JFM-09 (1/2)

* Direct comparison of fime-average (dynamic) vs shot-
integrated (static) particle balance method

— Allows accurate comparisons

* Strongly pumped devices show near zero retention in
steady-state (current/density flattop) phase

—Both CMOD (metallic PFC) & DIII-D (carbon PFC)
—NSTX without active pumping saw different results

* In ohmic discharges, results frended with divertor ion
flux over all 3 machines

—~1-2% retention/total ion flux in CMOD:; ~ 2-4% in DIII-D; ~
4-6% in NSTX from OSP only




Main findings of DoE JFM-09 (2/2)

* Mix of confinement regimes and heating sources were
studied

—Results mixed:
e DIlI-D: consistently low retention in H-mode phase

« CMOD: low retention in steady-state unaffected by confinement/
neating

* NSTX: showed increasing retention independent of confin. or
neating

* Also addressed:

—ex-situ analysis; long-term retention; disruptions
* Many, many details - see report if interested*
e Details are DIII-D “heavy”

*http://www.science.doe.gov/ofes/performancetargets.shiml



Dynamic and Static Balances Directly Compared

* I[n DIII-D:
— Careful calibration of dynamic balance diagnostics completed

— Multiple shots used for better accuracy in static balance
— Allows confidence in dynamic balance results

Comparison of Time-resolved vs Shot-infegrated Exhausted Particles
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Typical Dynamic Balance has Phases of Retention

 Phase-I:Pre-fill & Startup
—No neft retention

* Phase-2: L-mode

—Large wall uptake

—Dominated by puffing

* Phase-3: early H-mode
—ELM-free; ne build-up
—Net wall release

* Phase-4: H-mode
steady-state

—NO measurable net
refention
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(2) Phases Are of Most Interest

 Phase-I:Pre-fill & Startup
—No net retention

* Phase-2: L-mode
—Large wall uptake
—Dominated by puffing
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Phase-4
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* Phase-3: early H-mode
—ELM-free; ne build-up
—Net wall release

> Phase-4: H-mode
steady-state

—NO measurable net
refention
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DIlI-D Discharges had Low-ne/ncw; Med. Aux. Power

Ohmic/L-mode phase H-mode phase
(high retention) (low retention; near zero)
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C-MOD Found the Wall Uptake rate ~ 0 in Steady State

Phase

e Similar fgw ~ 0.3

* Most diverted
fokamaks see
similar results

-AUG (W PFC)
—JET @ low fueling

—JT-60U @ low
fueling

* In this regime is SOL
self-equilibrating?
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NSTX Results Markly Different w/o “Active” Pumping

* Li-coating had Pre-Li:black  with-Li:red
significant effect on

Plasma current (MA) i
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Temperature Dependence on Retention is also Stressed

* Higher AT for long pulse & higher ambient T in reactor
Retention in High-Z vs Temp.
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Neutron Damage to PFC Must be Considered

retention in High-Z vs DPA

. . . . . Source Metal T (K)
Lifetime limit set on graphite
| © Fukomoto w 473
) due to neutron damage 107 0 Takes: Vo 40 e
| | @ Wa.mpler w 470 D-T shots
O /A Wright Mo 400
) — Wright Mo 500
% End of > V' Wright/Whyte Mo 500
= ) i —
O lifetime = € 9 TR Q.
c
kS L {
m —_—
5 g
.g £ end of
2
v lifetime
< N | S L S
1 @ 875 °C Axial o :
34 shrink/swell ©  em et L intri <
by neutrons O 600 °C Radial | ! \flt to enhanced
v - v v ' v v s 7 D/metal atom
40 e from displacements
Displacements per atom 0.01 0.1 ] 10

displacements per atom (dpa)




Common Threads from Today's Research to

Future Machines - 3D Field Effects

1 ¢ Plasma-Wall Interactions (PWI)
‘ due to magnetic topology

2 ¢ Deformed by 3D asymmetries

ITER divertor and materials (03/2010)
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Extensive Work Done on 3D PWI at TEXTOR and DIll-D*

* Interaction of applied 3D perturbation on seperatrix
causes predicted strikepoint pattern (the footprint)

Magnetic footprint OSP #122489@3000ms
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Predictions for ITER RMP Coils Made*
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In Summary

* 2009 DoE Joint Facilities Milestone (JFM-09):
Hydrogenic Retention in PFCs*

—Similar particle balance methods compared on all 3
machines

—Consistent finding: Strong pumping plays role in global
particle balance

—edge modeling beyond 0-D would help (i.e., 2D (3D¢))
* Relation to future devices
—Temperature dependence
-Seems well understood, but no device runs at high T
—3D field effects should be considered
— Erosion rates, particle exhaust, heat & particle profiles

*nttp://www.science.doe.gov/ofes/performancetargets.shiml



