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1. Introduction

e "SlimCS” aims P, <3 GW (P, = 600~700 MW) with A=2.6 and reduced-size CS.
= Power exhausting to SOL is 5-6 times larger and R is smaller than ITER.
Power handling by plasma operation, divertor design, and target engineering is the
most important issue for the reactor design.
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Divertor concept for ITER and DEMO reactors

Power handling in S/imCS divertor was studied using SOLDOR/NEUT2D code=>SONIC
Design concept for the ITER divertor is applied/extended to the DEMO divertor:
“divertor detachment” (T~ a few eV) is a key for the power handling

(1) Divertor leg and inclination of the target are larger than ITER

= increase radiation, CX & volume recombination at the upstream, reducing g®reet,
(2) V-shaped corner = enhance recycling near the strike-point.
(3) impurity seeding such as Ar (Ne, N,, Kr, Xe) = enhance edge & divertor radiation.
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SONIC: self-consistent coupling with Ar impurity Monte Carlo
has been developed for Ar seeding and transport

* SOLDOR/NEUT2D were used for DEMO divertor design, where Ar impurity radiation
with non-coronal model: P,,, = L(T,t,) n,n,, and constant n,/n. was applied. [3]
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MC approach has advantages to impurity modelling

Most impurity transport processes are N @
incorporated in original formula:

e Tracking impurity neutrals and ions
= CX-loss, n-collision, recycling etc.
Radiation & Recombination at
multi-charge states
e Kinetic effect = Thermal force
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2. Simulation of power handling in the SIimCS divertor

SOLDOR/NEUT2D was used for the DEMO divertor design with Ar impurity radiation.
H. Kawashima, et al. Nucl. Fusion 49 (2009) 065007
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2.1 Power handling in divertor: divertor geometry

Case-2: Concept for the ITER divertor, V-shaped corner, was investigated
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Recombination and radiation power loads become important in high
recycling divertor, while Conduction/Convection heat load is reduced

e Evaluation of major heat load on the target
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2.2 Power handling in divertor: increasing Ar seeding

Case-3: increasing Ar ion in the outer divertor (n, /n)) ,,=5% was investigated.

eLarge heat load extends in a wide divertor area, when P_,**/P_ . increased to ~92%:
Peak heat load in the detached divertor, grfe2k~ 9 MWm™, is attributed to
Radiation/Neutral flux and their distributions in the divertor.
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* Modelling (understanding) of impurity transport in the edge and divertor is crucial
for improvement of the heat handling scenario with single/multi-impurity seeding.
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3. Development of MC modelling for Ar seeding

MC modelling for Ar seeding was investigated in the high recycling divertor:
Self-consistent coupling of the fluid plasma, MC neutral and impurity has been
developed for the reactor divertor.
Ar transport was simulated till t ~ 30 ms (time scale of particle transport in divertor):
friction force by the plasma flow is dominant = Ar recycling is enhanced near the

target
<> Influence of thermal force on img)urity transport is dominant near the separatrix
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Detachment was different depends on initial condition of the divertor

Self-consistent solutions for P, , =500 MW, I',, =2x10%! Ar/s were obtained using the

different initial conditions:

IC-1: background plasma in Case-2 (n,./n. = 2%), partially detached divertor, was used.

IC-2: background plasma of full detached divertor was used.

* Different divertor plasma profiles were sustained after the time scale of particle
transport in the divertor. They were still transient.
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Radiation power load from MC modelling is dominant more than
Non-coronal model with Constant n,/n,

e Region with large radiation loss (> 100 MWm3) is localized just above the target,

while the full detachment is sustained in the transport time scale (IC-2 case).
e Ar transport to the upstream SOL/edge is still transient:

radiation at SOL/edge, P, %9~ 20MW, is smaller than P, £99¢~130MW (n,./n. ~1%)
=» Investigation of Ar transport and radiation power at upstream SOL/edge is
necessary to determine appropriate or combination of the radiators.

SONIC IC-2: full detached divertor case
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4. Summary of power exhaust study for the DEMO divertor

e Huge power handling (P, =500MW) for SIimCS (P;,.,,,<3GW) was investigated

Previous work by SOLDOR&NEUT2D (non-coronal model & constant n,,/n;) showed

Intense Ar concentration (n,/n;~5%) in the long-leg and V-shaped divertor produced
full detached divertor (P, [°%/P, .~ 92% : P, ;C/¢%¢/P, .~26% and P, /P .~66% )
=> Peak heat load q,,,,~9IMW/m?, which was attributed mostly to radiation and

neutral flux were dominant, compared to transport (conv. and cond.) heat flux.

Distribution of the radiation region over a wide area (edge and divertor) will be
required in order to avoid local overheating of Plasma Facing Components.

e SONIC with impurity Monte-Carlo has been developed for Ar impurity seeding:
Self-consistent coupling of the fluid plasma, MC neutral and impurity has been
developed for the reactor divertor:

Ar transport was simulated until t ~ 30 ms (time scale of particle transport in

divertor), but still transient at the upstream SOL/edge.

=> Region with large radiation loss (>100 MWm~3) is localized just above the target,
while the full detachment is sustained in transport time scale in the divertor.

Radiation profile in steady-state and penetration to SOL/ edge/ core plasma will be
calculated to determine an appropriate radiator or the combination.



Issues for the DEMO divertor simulation/modelling

e Understanding of physics process and Improve of modelling under the ITER/DEMO-
level high recycling divertor are required, such as
atomic/molecule/impurity processes (n-n/i-n collision, photon absorption, MAR),
thermal stability of the divertor plasma with seeding and metallic (high-Z) impurities.

e Design for particle control should be improved to satisfy DEMO divertor functions:
He exhaust requires the large divertor pumping
< Formation of the detached divertor requires high neutral pressure and radiation.
Development of SONIC with multi-species (Ar and He) MDs started from 2009.

*Extension to the steady-state distribution (t~1s) will be investigated in [IFARC parallel
computer effective speed of 100TFlops (5000 times faster than JAEA: 20GFlops).
Now, ~9 hours are required for SONIC calculation of 10ms (need 100 times more).
=> SONIC calculation in steady-state (1s) will be 0.2 hour!

Future issues in power handling scenario:
« Large power handling at the main SOL and Edge is required for the DEMO plasma:

Restrictions of the power handling (n;.,,/n; and P ,,5°-/¢9%¢) such as influence of the
divertor and degradation of core performance are investigated in P, /P, > 90%.

* Improvement of tentative target design (W, RAFMS, water-cooling) is 5-7MWm-=2.



Issues for the DEMO divertor (in addition)

Future issues in power handling scenario for engineering and PSI:

For the divertor target of W (PFC) & RAFM (sturacture material) & water cooling,
allowable heat flux is tentatively expected to 5-7 MW/m?2.

=>» Design of materials, their specific joining and heat sink will be improved to
increase q,,,,and their enginnering reliability.

Plasma Facing Component issues for W-PWI are pointed out in order to
extrapolate from ITER to DEMO:
e Dependence/threshold of
He irradiation effects,
Neutron irradiation effects (defect, blistering by ions, increasing DBTT&T-retention)
on temperature, fluence and energy under ITER-level conditions.

*Target design/arrange of mono-block armors and melt-layer dynamics.

On the other hand, fluences of D/T/He ions and neutrons in the DEMO reactors-
level are far beyond existing database.



2.2 Gas puff and Impurity (Ar) seeding in V-shaped divertor

Additional gas puff/ Ar seeding will enhance divertor radiation for g, ., ~ 9 MWm™

e Gas puff (I ) is increased to 2x102*s™
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Impurity and neutral treatment
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Understanding of Kinetic Thermal Force

The definition of kinetic thermal force : the momentum change by Coulomb collision
is integrated over ion distribution distorted due to ion temperature gradient.
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Impurity MC was calculated in the background plasma/

neutral distributions in the previous (n,./n.)
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=2% case

Ar ions was traced up to t = 3.8 ms (transient phase)

Conversion of Carbon MC calculation was determined by
impurities with higher charged-state.
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Radiation profile (MC result) was localized above the target

* Radiation loss in the outer divertor was increasing during the MC calculation:
P..°%=126 MW at t = 10 ms was smaller than 140 MW for Case-2.

ra

* Radiation profile (MC result) was rather localized above the target, compared to
the non-coronal model with (n,,/n,),4, = const.
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Calculation to the conversion (near steady-state) will show larger radiation power
from higher charge-state Ar ions at the upstream of the target.
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4. Issue for impurity: dilution & He exhaust

Ar seeding (n,,/n.=0.22 =0.44%) reduces Power to SOL (P, <, = 600 = 480MW),

with expense of lowering Fusion power: P

Fusion

He concentration (n,./n,=5 =10%) largely reduces P

He exhaust is another important issue.

=3.0 = 2.7GW (-10%).
iion =3.0 = 2.2GW (-27%)

e Particle control, i.e. geometry and pumping speed, impurity seeding, should be
determined to optimize the “divertor performance”,

He exhaust requires divertor pumping
& Divertor detachment is formed under high neutral pressure and radiation loss.
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6. Issue for Plasma Facing Component (W-PWI)

Tungsten is foreseen as PFCs (divertor and first wall) in DEMO reactor.

PSI properties have been investigated for application of the ITER divertor.

Following W-PWI issues/database should be focused under the high fluence:
(1) “bubbles”, “holes”, “nano-structure” formation by He ion irradiation at T,, >700°C
(2) Neutron irradiation effects : defect, blistering, increasing DBTT and T-retention.
(3) Target design/arrange of mono-block armors and melt-layer dynamics.

Their dependence/threshold on temperature and fluence and energy are investigated
in recent experiments under the ITER-level condition.

On the other hand, fluences of D/T/He ions and neutrons in DEMO reactors are far
beyond existing database.

_ ITER (1 shot) DEMO (continuous)

T, at SS (°C) water-cool ~1000 [base 100-200] <1200 [base 290]

T, near strike-point (eV) 1-30 1-20
Fuel ion fluence (m2) 5x102%° - 5x102%° (400s) 1030-1031 (~year)
He ion fluence (m2) 1024 - 10% (400s) 102°-103° (~year)

Neutron fluence (dpa) ~0.5 (~5 year) 20-100 (~year)



