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Background 
  Significant progress has been made in the past decade developing high-

performance divertor concepts with W alloy and He cooling 
  W is used for high conductivity and high-temperature strength 
  He is used for high cycle efficiency and materials compatibility 
  Typical steady-state heat flux limits are ~10 MW/m2 

  The behavior of these designs under off-normal conditions has not been 
well characterized (e.g., the effect of ELM’s, VDE’s, disruptions) 
  Scoping studies are discouraging 

  However, heat flux limits are usually based on conservative  
design rules 
  How much higher heat flux could be handled using “design by analysis” 

instead of “design by rule”? 

  In the current ARIES study we will perform detailed, nonlinear, time-
dependent elastic-plastic analyses of components, from fabrication to 
failure, to refine our understanding of their behavior and limitations 
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Several He/W design concepts are under 
investigation in the ARIES Team 

 Combined plate and finger 
  Fingers for q>8 MW/m2 

 Plate for q<8 MW/m2 

  Increased design margin in exchange for 
more finger units, ~89,000 

  T-Tube:  ~1.5 cm diameter x 10 cm long 
  Impinging slot-jet cooling 
 Allowable heat flux >10 MW/m2 

  ~110,000 units for a power plant 

 Plate: 20 cm x 100 cm 
  Impinging slot-jet cooling 
 Allowable heat flux ~10 MW/m2 

  ~750 units for a power plant 

 EU finger: 2.6 cm diameter 
  Impinging multi-jet cooling 
 Allowable heat flux >10 MW/m2 

  ~535,000 units for a power plant 
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T-tube divertor 

  The T-Tube divertor was designed to 
accommodate a surface heat flux of 10 MW/m2  for 
ARIES-CS (by Thomas Ihli) 

•  Tmax=1300 ˚C 
•  3Sm=752 MPa@750 ˚C  

  It was modified for tokamaks to  
accommodate two heat flux zones  
without changing configuration,  
except for the W armor thickness. 
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The T-tube design can be further optimized by 
tailoring the inlet channels 

  Tapering reduces eddies 

  More uniform slot flow results 

  Further improvement can be  
found by optimizing the shape 
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Plate divertor design 
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Thermal hydraulic experiments confirm very high heat 
transfer for slot jet cooling, including pin fins 

In 
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Heated brass shell 

  

  Pin-fins with ~260% more surface 
area improve cooling performance 
by ~150%–200% while increasing 
pressure drop by ~40–70% 

  H > 50 kW/(m2⋅K) is possible 
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 The EU finger design was improved 

  No transition joint between W and FS 

  Transition is made at the end of the  
inlet manifold 

  We also added a 1-mm inner shell for  
double containment 
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He-cooled W target plate 

  Multiple-jet cooling 
  W-base plate fabricated by 

brazing together front plate, 
back plate and side walls. 

  Small modules on plasma side 
arranged over the entire plate 

  No transition between W-alloy 
and steel at the modules (in the 
EU finger design, joints exist 
between W and steel) 

Armor (W) 

Thimble(W-alloy) 

Ring (W-alloy) 

Fingers can be integrated into the plate design to provide 
localized HHF handling capability with minimum units 
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New analysis of the combined plate+finger design 
now includes the back portions of the unit 

CAD model 

  1.8 million tetrahedral 
elements in CFX model. 

  k-ε turbulent model. 
  Inlet boundary condition 

assumed identical to the 
outlet flow of the finger. 

FEA Model 
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  Maximum combined primary + secondary stress is  
470 MPa ( < 3Sm=752 MPa for W temperature T=750°C)  

  Maximum total deformation is about 0.4 mm 

Velocity   Heat transfer coefficient 
Stress 

Analysis confirms temperature and stress remain 
within allowable limits 
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Expanded efforts are underway to improve our  
understanding of HHF limits 

  Allow local yielding, and consider shakedown, strain hardening, 
creep and ratchetting phenomena 

  Analyze a limited number of transient loading conditions 

  Use “Design by Analysis” rather than “Design by Rule” 
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transients 
  ASME is conservative; 

“Design by Analysis” limits 
may be higher due to stress 
relaxation, strain hardening, 
etc. 

  Extensive modeling and 
experimental verification are 
needed 
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“Design by Code” 
  ASME pressure vessel code (& Japanese MITI Notification 501) 

contain rules for simplified elastic-plastic analyses 
  These rules are intended to provide conservatism for critical components 

in applications such as nuclear reactors 

  Sm (for FS and refractories) is the lowest of the following 
  1/3 of the minimum tensile strength at room temperature 
  1/3 of the tensile strength at elevated temperature 
  2/3 of the minimum yield strength at room temperature 
  2/3 of the yield strength at elevated temperature 

  Code rules (3Sm) are intended to prevent… 
  Bursting and gross distortion from primary (pressure) stress 
  Ratchetting under combined primary + secondary stress, for any number 

of cycles between room temp. and operating temperature 
  Fatigue failure 

  They do not guarantee survival under all  
forms of inelastic behavior 
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“Design by Analysis” should allow higher heat loads 

  Even for pure elastic behavior 
the code can be conservative 

  Secondary stresses are 
inherently self-limiting; local 
yielding may be acceptable 

  Including creep stress 
relaxation might extend the 
design space even further 

  Initially we want to answer the 
question: “how much benefit 
may be gained if we use 
‘Design by Analysis’?” 

Limit stress for combined tension and 
bending (from ASME criteria document) 
(safety factor of 1.27-1.67) 
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Design criteria are needed for “design by analysis” 

  For example, the NET Team used: 

where                  is the maximum value of the principal strains 

accumulated over the operating life, 

and                        is 1/2 of the uniform elongation. 
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Analysis methodology using ANSYS 

  Various plastic deformation models exist, e.g. 
  Bilinear with isotropic hardening (recommended for large strain) 
  Bilinear with kinematic hardening (for small strain), including the 

Bauschinger effect 
  Multilinear (allows for more temperature-dependent data) 

  Choice of different models may result 
in different conclusions 

  Include thermal creep 

  Include radiation creep 

Bauschinger effect: microscopic change 
in material increases tensile strength at 
the expense of compressive strength 



page 17 of 17 

Summary 

1.  Progress has been made on design and analysis of several 
advanced W/He divertor designs 

2.  New efforts on elastic-plastic analysis are underway 

3.  We hope to demonstrate a larger design window for  
plasma-facing components under “normal operating 
conditions” 

4.  We will also quantify the limits under a select number of  
“off-normal” operating conditions 


