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1. Introduction

e "SlimCS” aims P, <3 GW (P, .= 600~700 MW) with A=2.6 and reduced-size CS.
= Power exhausting to SOL is 5-6 times larger and R is smaller than ITER.
Power handling by plasma operation, divertor design, and target engineering is the
most important issue for the reactor design.
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Divertor concept for ITER and DEMO reactors

Power handling in S/imCS divertor was studied using SOLDOR/NEUT2D code=>SONIC
Design concept for the ITER divertor is applied/extended to the DEMO divertor:

“divertor detachment” (T~

a few eV) is a key for the power handling

(1) Divertor leg and inclination of the target are larger than ITER
= increase radiation, CX & volume recombination at upstream, reducing gt'eet,
(2) V-shaped corner = enhance recycling near the strike-point.
(3) impurity seeding such as Ar (Ne, N,, Kr, Xe) = enhance edge & divertor radiation.
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SONIC : self-consistent coupling with Ar impurity Monte Carlo
has been developed for Ar seeding and transport

* SOLDOR/NEUT2D were used for DEMO divertor design, where Ar impurity radiation
with non-coronal model: P,,, = L(T,t,) n,n,, and constant n,/n; was applied. [3]

[1] K. Shimizu, et al., J. Nucl. Mater. 313-316 (2003)
D ion fl2I/72. Kawashima, et al. J. Plasma Fusion Res. 1 (2006) 31

[3] H. Kawashima, et al. Nucl. Fusion 49 (2009) 065007
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MC approach has advantages to impurity modelling

Most impurity transport processes are X @
incorporated in original formula:

e Tracking impurity neutrals and ions
= CX-loss, n-collision, recycling etc.
Radiation & Recombination at
multi-charge states
e Kinetic effect = Thermal force
e Gyro-motion = Erosion (for PWI)
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For self-consistent coupling of MC code,
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2. Simulation of power handling in the SIimCS divertor
T ———————————

SOLDOR/NEUT2D was used for the DEMO divertor design with Ar impurity radiation.

H. Kawashima, et al. Nucl. Fusion 49 (2009) 065007
Input parameters at edge-SOL
P_.=500 MW, I .=0.5x10%3s(r/a=0.95)

. Case-1:pumping from bottom corner
out out
% =% =1 m?s?, D =0.3 ms? with gas puff and impurity seeding:

mreseon D, /T, gas puff: I «=1x10%s* (200 Pam3s™)
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2.1 Power handling in divertor: divertor geometry

Case-2: Concept for the ITER divertor, “V-shaped corner”, is investigated
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Recombination and radiation power loads become important in high
recycling divertor, while Conduction/Convection heat load is reduced

e Evaluation of major heat load on the target
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2.2 Power handling in divertor: increasing Ar seeding

Case-3: increasing Ar ion in the outer divertor (n, /n).,,=5% is investigated.

odiv
eLarge heat load extends in a wide divertor area, when P__,*'/P_ . increased to ~92%:

Peak heat load in the detached divertor, gPe2k~ 9 MWm™, is attributed to
Radiation/Neutral flux and their distributions in the divertor.

* Modelling (understanding) of impurity transport in the edge and divertor is crucial
for improvement of the heat handling scenario with single/multi-impurity seeding.

ase o Vo2 JEsed Intense radiation area (and plasma detachment)

0 (ny/n=2%) _(n,/n=2%) (N,/n=5%) ,,4 extending to wide and upstream in the divertor

20 ;T<o'ﬂpeak heat load Total divertor r%)n_ Case-2: nAr/ni=2% Case-3:nAr/ni=5%
c? 60 _ ] 300 T ‘ 7simC508/run500V2/Wxdr_160 ' ' ' z l :
£ : —_
50 [ ; 4.4 B
= : =
= 40f 200 €
%3 30} radiation/ ] z% E
88 ;reoomFination/ \ a N |
o 20 :_neutras P
F convection/ M
10 - conduction
0 r transport | | 0
50 100 150 200 250 _
o-div
Prad (MW) -4.8




3. Development of MC modelling for Ar seeding

MC modelling for Ar seeding was investigated in the high recycling divertor:
*Self-consistent coupling of the fluid plasma, MC neutral and impurity has been
developed for the reactor divertor.

Ar transport was simulated till t ~ 10 ms (typical time scale of transport in divertor):

Ar recycling is enhanced near the target (friction force is dominant)
=>» Influence of thermal force on impurity transport is observed near the separatrix

Ar seeding rate :[,. =2x10%! Ar/s (4 Pam3s?)
Dz/Tz gas pUﬁ:: I-puf'fz 5x10%2s1 (100 Pam3S'£).2 wxdr 36/60 Ratio 113.618 msec
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T T | T l T

Te 114.618 msec wxdr_36/dIMP_600 Ni 114.618 ms
T T T T T T T

wxdr_36/dIMP_600
T T
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Detachment was different depends on initial condition of the divertor

Self-consistent solution for P, . =500 MW, I',,=2x10%! Ar/s was obtained using the
different Initial Conditions:

IC-1: background plasma in Case-2 (n,./n. = 2%) was used (partially detached).

IC-2: background plasma of full detached divertor was used.

* Different divertor plasma profiles are sustained after time scale of transport in
divertor, but still transient at the upstream SOL/edge.
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Radiation power load from MC modelling (div. transport time scale)
iIs dominant more than Non-coronal model and Constant n, /n.

e Region with large radiation loss (>50 MWm?3) is localized just above the target,

while the full detachment is sustained in divertor transport time scale (IC-2 case).
e Ar transport to the upstream SOL/edge is not long enough:

radiation at SOL/edge, P, %¢~ 20MW, is smaller than P, 29%9¢~130MW (n,./n. ~1%)
=» Investigation of Ar transport and radiation power at SOL/edge is necessary to
determine appropriate or combination of the radiators.
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4. Summary of power exhaust study for the DEMO divertor

* Huge power handling (P, =500MW) for SIimCS (P;,;,,S3GW) was investigated
The previous work by SOLDOR&NEUT2D(non-coronal model & constant n,/n;) showed

Intense Ar concentration (n,/n~5%) in the long-leg and V-shaped divertor produced
the detached divertor (P, /P, ~ 92% : P, ;5°~¢%¢/P, .~26% and P, ,2V/P,;~66% )

= Peak heat load q;,,,,~9MW/m? , which was attributed mostly to radiation and
neutral flux are dominant, compared to transport (conv. and cond.) heat flux.

Distribution of the radiation region over a wide area (edge and divertor) will be
required in order to avoid local overheating of Plasma Facing Components.

 SONIC with impurity MC has been developed for the Ar impurity seeding.

Self-consistent coupling of the fluid plasma, MC neutral and impurity has been

developed for the reactor divertor:

Ar transport was simulated untill t ~ 10 ms (time scale of impurity transport in divertor),

but still transient at the upstream SOL/edge.

= Region with large radiation loss (>50 MWm-3) is localized just above the target,
while the full detachment is sustained in divertor transport time scale.

Radiation profile in steady-state and penetration to SOL/ edge/ core plasma will
be calculated to determine an appropriate radiator or the combination.



Issues for the DEMO divertor design
* Understanding of physics process and Improve of modelling under the ITER/DEMO-
level high recycling divertor are required, such as

atomic/molecule/impurity processes (n-n/i-n collision, photon absorption, MAR) ,
thermal stability of the divertor plasma with seeding and metallic (high-Z) impurities.

 Design for particle control should be improved to satisfy DEMO divertor functions:
He exhaust requires the large divertor pumping

<~Formation of the detached divertor requires high neutral pressure and radiation.
Development of SONIC with multi-species (Ar and He) MDs started from 2009.

Future issues in power handling scenario:

« Large power handling at the main SOL and Edge is required for the DEMO plasma:

Restrictions of the power handling (n;.,./n; and P ,,5°-/¢9e¢ ) such as due to influence

of the divertor and degradation of core plasma performance is investigated.

» Desirable heat load of tentative target design (W, RAFMS, water-cooling) is 5-7MWm-2.

= Development/ improvement of plasma operation, divertor design, and target
engineering are required for consistent heat handling scenario.



Issues for the DEMO divertor (in addition)

Future issues in power handling scenario for engineering and PSI:

For the divertor target of W (PFC) & RAFM (sturacture material) & water cooling,
allowable heat flux is tentatively expected to 5-7 MW/m?.

=>» Design of materials, their specific joining and heat sink will be improved to
increase q,,,,and their enginnering reliability.

Plasma Facing Component issues for W-PWI are pointed out in order to
extrapolate from ITER to DEMO:
e Dependence/threshold of
He irradiation effects,
Neutron irradiation effects (defect, blistering by ions, increasing DBTT&T-retention)
on temperature, fluence and energy under ITER-level conditions.

*Target design/arrange of mono-block armors and melt-layer dynamics.

On the other hand, fluences of D/T/He ions and neutrons in the DEMO reactors-
level are far beyond existing database.



Estimation of computer time for steady—state distribution( t" 1s)

JAEA parallel computer: effective speed20GFlops

IFARC parallel computer: effective speed 100TFlops
100TFlops/20GFlops = 5000 times faster

SONIC calculation: 3ms ~ 9 hours
1s/0.003s = 333 times more required

Then, SONIC calculation in steady-state (1s) will need
9 hrs x 333/5000 = 0.6 hr



2.2 Gas puff and Impurity (Ar) seeding in V-shaped divertor

Additional gas puff/ Ar seeding will enhance divertor radiation for g, ., ~ 9 MWm™

* Gas puff (I, ¢) is increased to 2x10%s™

% peak \

odp.=2%

Fix (n,/n.)

- Gtarget
Case-2

(MW/m2)

10 | allowable power handling level

0.5 1 1.5
gas puff flux Ty, (1023 s71)

Ar fraction is increased to (n,./n)

30

10 |

odo

fS%

qtarget

peak x\

Fix F ouf= X103 s

Case-2

allowable power handling level

qt vs Ar Prad Te 0909

©

gt vs Ar Prate 0909

(c) |

Ar fraction (nar/Nj)ogp (%)

* Pumping rate 7, is increased from 2% to 3-4% by increase the neutral density.
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Impurity and neutral treatment

ne=1x1 020 m-3 2007/06/13

‘ : e
| o neT=1x10 s Impurity radiation: non-coronal model

|

,,,,,,,,,,,,,,,,,,, .. = - ® Arfraction (n,/n)) is given.

—
o
&
o

e Radiation loss power is evaluated by
W,=-n_n,L(T,).

7777777777777 | e LossrateL(T,)is used on
n.T,..=1x10%s/m3.

1082 |-~

104 +--fF-----"-"-"-"-""-

Power function Lz(Te) (Wm™S

1 10 100 1000

Neutral reflection: W target model

08| D=>W* e Assumed W wall, which reflection

coefficients of particle and energy are
almost twice larger than that for carbon.

o
o
=
Q
&

Reflection Coefficient

0.1 1 10 100 1000 19
energy (eV)



Understanding of Kinetic Thermal Force

The definition of kinetic thermal force : the momentum change by Coulomb collision
is integrated over ion distribution distorted due to ion temperature gradient.
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Impurity MC was calculated in the background plasma/

neutral distributions in the previous (n,./n.)

odiv

=2% case

Ar ions was traced up to t = 3.8 ms (transient phase)

Conversion of Carbon MC calculation was determined by
impurities with higher charged-state.
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Radiation profile (MC result) was localized above the target

e Radiation loss in the outer divertor was increasing during the MC calculation:
P..°%=126 MW at t = 10 ms was smaller than 140 MW for Case-2.

ra

* Radiation profile (MC result) was rather localized above the target, compared to
the non-coronal model with (n,,/n;),4, = const.
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Calculation to the conversion (near steady-state) will show larger radiation power

from higher charge-state Ar ions at the upstream of the target.
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4. Issue for impurity: dilution & He exhaust

Ar seeding (n,,/n.=0.22 =0.44%) reduces Power to SOL (P, ., = 600 = 480MW),

with expense of lowering Fusion power: P

Fusion

He concentration (n,./n,=5 =10%) largely reduces P

He exhaust is another important issue.

=3.0 = 2.7GW (-10%).

=3.0 = 2.2GW (-27%)

e Particle control, i.e. geometry and pumping speed, impurity seeding, should be
determined to optimize the “divertor performance”,

He exhaust requires divertor pumping
& Divertor detachment is formed under high neutral pressure and radiation loss.
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6. Issue for Plasma Facing Component (W-PWI)

Tungsten is foreseen as PFCs (divertor and first wall) in DEMO reactor.

PSI properties have been investigated for application of the ITER divertor.

Following W-PWI issues/database should be focused under the high fluence:
(1) “bubbles”, “holes”, “nano-structure” formation by He ion irradiation at T, >700°C
(2) Neutron irradiation effects : defect, blistering, increasing DBTT and T-retention.
(3) Target design/arrange of mono-block armors and melt-layer dynamics.

Their dependence/threshold on temperature and fluence and energy are investigated
in recent experiments under the ITER-level condition.

On the other hand, fluences of D/T/He ions and neutrons in DEMO reactors are far
beyond existing database.

_ ITER (1 shot) DEMO (continuous)

T, at SS (°C) water-cool ~1000 [base 100-200] <1200 [base 290]

T, near strike-point (eV) 1-30 1-20
Fuel ion fluence (m2) 5x10%> - 5x102° (400s) 1030-1031 (~year)
He ion fluence (m) 1024- 10% (400s) 102°-103° (~year)

Neutron fluence (dpa) ~0.5 (~5 year) 20-100 (~year)



5. Issue for heat load handling: target heat sink

Tungsten is foreseen as candidate for the high temperature PFC in DEMO reactor:

low sputtering yield & high energy threshold and low T-retention.

Heat removal is expected to % of ITER divertor since lower thermal conductivity of
RAFM (F82H: 1/10 of Cu) and higher temperature water (200 °C at the inlet).

rmor

21 mm

,- Thermal conductivity

110 of Cu

« 112 of ITER

RAFM substrate o
NiCuMn blazing
Divertor ITER DEMO
Cooling tube Cu-alloy (CuCrZr) RAFM
Armor CFC/wW w
Coolant water 100°C, 4MPa water 200°C, 10MPa
Heat load < 20 MW/m?2 =10 MW/m?2
“-r

Handle power of x6

Ultimate design w/o margins!



Issue for heat load handling: target heat sink

(1) Higher base temperature T,_..~ 290°C (10MPa, 10 m/s) is required:

e Irradiation embitterment at low temperature (<300°C) may occur (few database).
T, .se > 240°C to avoid corrosion by radiation-produced hydrogen peroxide (H,0,)

e Sub-critical & Super-critical water (>20MPa) leads to enhance corrosion of RAFM.

(2) Allowable heat flux is reduced to 5-7 MW/m? K. Tobita, et al. Nucl. Fusion 49 (2009) 075029
(2-1) allowable heat flux determined by thermal analysis: q
Omax ~ 7 MWImM? (1. = 290°C) o

coolant

T(°C)
1,300

Requirement o

W T <1,200°C Recrystalization

RAFM 290°C < T = 550°C Stress-creep 200]

TIIS CTZP 30.0 TOTAR BUERMOSATED TIMD

(2-1) allowable heat flux determined by thermal stress at F82H cooling pipe:
Amax ~ 3 MW/m?

Primary (pressure) +Secondary (thermal) Stress < 3Sm (¢t 1mm F82H)

Possible to increase the thickness to ~2mm if allowed to use F82H above 550°C



