
O i f FFHR d i ti itO i f FFHR d i ti itO i f FFHR d i ti itO i f FFHR d i ti it

Japan-US Workshop on
Fusion Power Plants and Related Advanced Technologies 

with participation of EU and China
March 16-18, 2009 at the University of Tokyo in Kashiwa, JAPAN

Overview of FFHR design activityOverview of FFHR design activityOverview of FFHR design activityOverview of FFHR design activity
Akio Sagara

with FFHR design group : 
S. Imagawa1, Y. Kozaki1, O. Mitarai2, T. Goto1, T. Tanaka1, T. Watanabe1, N. Yanagi1, 

H. Tamura1, K. Takahata1, S. Masuzaki1, M. Shoji1, M. Kobayashi1, 
K Ni hi 1 T M 1 T N k 1 M K d 1 A Ni hi 1K. Nishimura1, T. Muroga1, T. Nagasaka1, M. Kondo1, A.Nishimura1, 

H. Igami1, H. Chikaraishi1, S. Yamada1, T. Mito1, N. Nakajima1, 
S. Fukada3, H. Hashizume4, Y. Wu5, Y. Igitkhanov6, O. Motojima1

11National Institute for Fusion Science, Toki, Gifu, JapanNational Institute for Fusion Science, Toki, Gifu, JapanNational Institute for Fusion Science, Toki, Gifu, JapanNational Institute for Fusion Science, Toki, Gifu, Japan
22Tokai University, Kumamoto, JapanTokai University, Kumamoto, Japan
33Kyushu University, Fukuoka, JapanKyushu University, Fukuoka, Japan

44Tohoku University, Sendai, JapanTohoku University, Sendai, Japan
55Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China.Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China.

66MM Pl kPl k I tit tI tit t füfü Pl h ikPl h ik IPPIPP EURATOM A G if ld GEURATOM A G if ld G

FFHR2m2FFHR2m2
3GWth3GWth
FFHR2m2FFHR2m2

3GWth3GWth

66MaxMax--PlanckPlanck--Institut Institut fürfür PlasmaphysikPlasmaphysik, IPP, IPP--EURATOM Ass., Greifswald, GermanyEURATOM Ass., Greifswald, Germany

1 / 25

3GWth3GWth
5 Tesla5 Tesla
30,000 ton30,000 ton

3GWth3GWth
5 Tesla5 Tesla
30,000 ton30,000 ton



FFHR design collaborations FFHR design collaborations 
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Role of Design Study to Helical DemoRole of Design Study to Helical Demo--Reactor Reactor 
based on LHD Projectbased on LHD Project

Role of Design Study to Helical DemoRole of Design Study to Helical Demo--Reactor Reactor 
based on LHD Projectbased on LHD Project

FFHR designFFHR design
ith R&D’ith R&D’with R&D’swith R&D’s
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Two main features in FFHRTwo main features in FFHR
(1)(1) QuasiQuasi--force free  force free  γγ optimizationoptimization

on continuous helical windingon continuous helical winding
J x Bsurf = 0, when ϑ = 45 deg.J x Bsurf = 0, when ϑ = 45 deg.

on continuous helical windingon continuous helical winding
to reduce the magnetic hoop force to reduce the magnetic hoop force 

(Force Free Helical Reactor: FFHR)(Force Free Helical Reactor: FFHR)
large large maintenancemaintenance portsports

t d th bl k tt d th bl k tto expand the blanket spaceto expand the blanket space
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low reactivity with airlow reactivity with air
low pressure operationlow pressure operation
low tritium solubilitylow tritium solubility
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Issues on blanket and divertor spaceIssues on blanket and divertor spaceIssues on blanket and divertor spaceIssues on blanket and divertor space
(a) (b)

HoweverHowever
For For αα--heating efficiency over heating efficiency over 
90%, the importance of the 90%, the importance of the 
ergodic layers has been found ergodic layers has been found 
by collisionless orbitsby collisionless orbits

For For αα--heating efficiency over heating efficiency over 
90%, the importance of the 90%, the importance of the 
ergodic layers has been found ergodic layers has been found 
by collisionless orbitsby collisionless orbitsby collisionless orbits by collisionless orbits 
simulation of 3.52MeV alpha simulation of 3.52MeV alpha 
particles.particles.

by collisionless orbits by collisionless orbits 
simulation of 3.52MeV alpha simulation of 3.52MeV alpha 
particles.particles.

By T Watanabe
To remove the interference between the To remove the interference between the 
first walls and the ergodic layers first walls and the ergodic layers 
surrounding the last closed flux surrounding the last closed flux 

To remove the interference between the To remove the interference between the 
first walls and the ergodic layers first walls and the ergodic layers 
surrounding the last closed flux surrounding the last closed flux 

By T. Watanabe

su ou d g t e ast c osed usu ou d g t e ast c osed u
surface, helical xsurface, helical x--point divertor (HXD) point divertor (HXD) 
has been proposed.has been proposed.

su ou d g t e ast c osed usu ou d g t e ast c osed u
surface, helical xsurface, helical x--point divertor (HXD) point divertor (HXD) 
has been proposed.has been proposed.

Helical X point Divertor (HXD) T Morisaki et al
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Helical X-point Divertor (HXD) T. Morisaki et al., 
FED 81 (2006) 2749.
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Three candidates are proposed 
to increase blanket space > 1.1 m
Three candidates are proposed 

to increase blanket space > 1.1 m

1. Reduction of the inboardthe inboard
shielding thickness 

i WCi WC

2. Improvement of the symmetrythe symmetry
of magnetic surfaces 
by increasing the current densityusing WCusing WC
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by increasing the current density 
at the inboard side of the helical coils
by splitting the helical coils.by splitting the helical coils.
N Yanagi et al in ITC-18 conference
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Smaller size and higher field with γ = 1
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thinner FFHR-2S Type-I
g γ

(reduction of total mass)

K. Saito et al., in ITC-18 conference.
ICRF 
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Three candidates are proposed 
to increase blanket space > 1.1 m
Three candidates are proposed 

to increase blanket space > 1.1 m

3.  Enlargement of reactor  size3.  Enlargement of reactor  size3.  Enlargement of reactor  size3.  Enlargement of reactor  size
Neutron wall loading should be kept at < 2 MW/mNeutron wall loading should be kept at < 2 MW/m22
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Coil major radius R c (m) (Includes 
SOL and 
V/V)

A. Sagara et al., in ISFNT-8, FED 83 (2008) 1690.
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Design windows and costDesign windows and costDesign windows and costDesign windows and cost

β=5%, γ = 1.20, j=26A/mm2 are selected

Y. Kozaki et al., in IAEA-2008 conference.
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The COEs of helical reactors, 
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show the bottom as the result
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f p g γ β
Hf=1.16 means the 1.2 times value achieved in
LHD experiment. j=26A/mm2 is premised.

show the bottom as the result 
of the trade-off between the 
Cmag and Cbs, i.e., B0 
versus plasma volume.



Issues on nuclear shield on SC coilsIssues on nuclear shield on SC coilsIssues on nuclear shield on SC coilsIssues on nuclear shield on SC coils

Acceptable level achievedAcceptable level achieved

Discrete Pumping with Semi-closed Shield (DPSS) has been proposed
A. Sagara et al., in ISFNT-8, FED 83 (2008) 1690.

Acceptable level achievedAcceptable level achieved
Cover rate > 90%Cover rate > 90%
Fast neutron < 1E22 n/mFast neutron < 1E22 n/m22 in 30 yearsin 30 years
Max. nuclear heating < 0.2 mW/cmMax. nuclear heating < 0.2 mW/cm33

Total nuclear heating ~ 40 kWTotal nuclear heating ~ 40 kW
Cryogenics power ~ 12 MW (1% of PCryogenics power ~ 12 MW (1% of Pff))

3D design with 3 g
DPSS

12 / 25



Reactor size optimization of FFHR2m2Reactor size optimization of FFHR2m2Reactor size optimization of FFHR2m2Reactor size optimization of FFHR2m2
inner shifted (equivalent to Rax=3.6m in LHD),

Vacuum Magnetic γ = 1.20, α = +0.1
Rp=16m, Rc=17.3m, B0=4.84T,  j=26A/mm2 , WWmagmag=167.7GJ=167.7GJ

PC positionPC position

Vacuum Magnetic 
Surface

expandedRp
Rb

Rc Type AType A

13 / 25aPC = 8.2 m, HC : 38.72 MA, OV : -23.47 MA, IV : -17.04 MA



inner shifted (equivalent to Rax=3.6m in LHD),
Vacuum Magnetic

Reactor size optimization of FFHR2m2Reactor size optimization of FFHR2m2Reactor size optimization of FFHR2m2Reactor size optimization of FFHR2m2

R

γ = 1.20, α = +0.1
Rp=16m, Rc=17.3m, B0=4.84T,  j=26A/mm2 , WWmagmag=149.1GJ=149.1GJ

PC positionPC position

Vacuum Magnetic 
Surface

moved
Rp

Rb
Rc Type BType B

14 / 25HC : 38.72 MA, OV : -18.39 MA, IV : -13.94 MA



inner shifted (equivalent to Rax=3.6m in LHD),
Vacuum Magnetic

Reactor size optimization of FFHR2m2Reactor size optimization of FFHR2m2Reactor size optimization of FFHR2m2Reactor size optimization of FFHR2m2

γ = 1.20, α = +0.1
Rp=15.5m, Rc=16.7m, B0=4.90T, j=25A/mm2 , WWmagmag=135.6GJ=135.6GJ

PC positionPC position

Vacuum Magnetic 
Surface

Type B’Type B’WC shield at inboard

15 / 25HC : 37.87 MA, OV : -18.01 MA, IV : -14.79 MA
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New control method in a thermally unstable New control method in a thermally unstable 
ignition regimeignition regime
New control method in a thermally unstable New control method in a thermally unstable 
ignition regimeignition regime O. Mitarai et al., in IAEA-2008 conference.

ProportionalProportional--IntegrationIntegration--Derivative (PID) controlDerivative (PID) control
The error of the fusion power The error of the fusion power with an opposite signwith an opposite sign of of 

(P(P )) (P(P PP )) t bili th th l i t bilitt bili th th l i t bilite(Pe(Pff)= )= -- (P(Pfofo--PPff)) can stabilize the thermal instability can stabilize the thermal instability 
through fuelingthrough fueling. . 

O Mitarai al Plasma and Fusion Research Rapid

SSDTDT(t)=0 (t)=0 
if Sif SDTDT(t)<0(t)<0

O. Mitarai al. Plasma and Fusion Research, Rapid 
Communications, 2, 021 (2007) . 

τταα*/*/ττEE=3 ~ 5=3 ~ 5
ττ */*/ττ =2 ~ 8=2 ~ 8ττpp //ττEE=2 ~ 8=2 ~ 8

But, But, 
effectively effectively 
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reduced due reduced due 
to burningto burning



Design parametersDesign parametersDesign parametersDesign parameters
Design parameters LHD FFHR2 FFHR2m1FFHR2m2 SDC 1 1Design parameters S C

Polarity l 2 2 2
Field periods m 10 10 10
Coil pitch parameter γ 1.25 1.15 1.15
Coil major Radius Rc m 3.9 10 14.0
Coil minor radius a m 0 98 2 3 3 22

2
10

1.20
17.3
4 16

1

1.1
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Z /R =4 5/14on

ly
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aPC to 0.95Rc

Coil minor radius ac m 0.98 2.3 3.22
Plasma major radius Rp m 3.75 10 14.0
Plasma radius <ap> m 0.61 1.24 1.73
Plasma volume Vp m3 30 303 827
Blanket space ∆ m 0.12 0.7 1.1
M i fi ld B T 4 10 6 18

4.16
16.0
2.35
1744
1.05
4 84

0.9
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 W
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 o

aPC to Rc

Type A

Magnetic field B0 T 4 10 6.18

Max. field on coils Bmax T 9.2 14.8 13.3
Coil current density j MA/m2 53 25 26.6
Magnetic energy GJ 1.64 147 133
Fusion power P GW 1 1 9

4.84

11.9
26

3 0 7

0.8

S
to

re
d 

En
e

ZIV (RIV) increase.
Type B

Fusion power PF GW 1 1.9
Neutron wall load Γn MW/m2 1.5 1.5
External heating powePext MW 70 80 43 100
α heating efficiency ηα 0.7 0.9 0.9 0.9
Density lim.improvement 1 1.5 1.5 7.5

3
1.5

0.6

0.7

0.1 0.15 0.2 0.25 0.3 0.35

γ=1.20, Rp/Rc=3.6/3.9

Bleak(2.5 Rc) < 0.5 mT
aIV=aOV, RIV<Rc-ac

H factor of ISS95 2.40 1.92 1.92 1.60
Effective ion charge Zeff 1.40 1.34 1.48 1.55
Electron density ne(0) 10^19 m-3 27.4 26.7 17.9 83.0
Temperature Ti(0) keV 21 15.8 18 6.33
Plasma beta <β> % 1.6 3.0 4.40 3.35

(aPC-ac)/Rc

In SDC, 
divertor heat load is 

18 / 25

Plasma beta <β> % 1.6 3.0 4.40 3.35
Plasma conduction lo PL MW 290 453 115
Diverter heat load ΓdivMW/m2 1.6 2.3 0.6
Total capital cost G$(2003) 4.6 5.6
COE mill/kWh 155 106 93

7.0

drastically reduced (~1/4).
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Base design of Base design of 
CICC magnet systemCICC magnet system

Base design of Base design of 
CICC magnet systemCICC magnet system

101
 

CICC magnet systemCICC magnet systemCICC magnet systemCICC magnet system
Nuclear heating in FFHR2m1S. Imagawa  et al., in IAEA-2008 conference
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By T. Tanaka

Max. cooling path is 500 m for the Max. cooling path is 500 m for the 
nuclear heat of 1 mW/cmnuclear heat of 1 mW/cm33. . 
This value is 5 times larger on theThis value is 5 times larger on the

By T. Tanaka
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This value is 5 times larger on the This value is 5 times larger on the 
FFHR magnets. FFHR magnets. 
GammaGamma--ray heating is dominant.ray heating is dominant.



IndirectIndirect--cooled helical coil systemcooled helical coil system
(alternative for CICC)

with quench protection by internal dumping

IndirectIndirect--cooled helical coil systemcooled helical coil system
(alternative for CICC)

with quench protection by internal dumpingwith quench protection by internal dumpingwith quench protection by internal dumping

Stress analysis inside of the coilStress analysis inside of the coil
H Tamura et al in ITC 18 conference

SS316
SS316 H. Tamura  et al., in ITC-18 conference

Indirect Cooling

Circumferential strain 
distribution

Cross-sectional structure of the helical coil

Quench protection by internal dumpingQuench protection by internal dumping Hoop stress

Quench back with a secondary circuit
to increase a decay time constant > t=20 s

K. Takahata et al., ITC-17.
Quench protection by internal dumpingQuench protection by internal dumping Hoop stress 

distribution

21 / 25

to reduce a transient voltage  Vmax=10 kV
to avoid a serious hot spot < 150 K Confirmed to be within the permissible 

range.



LHDLHD--type support post for FFHR type support post for FFHR LHDLHD--type support post for FFHR type support post for FFHR 

Gravity per support Gravity per support 
16 000 t / 30 l 530 t16 000 t / 30 l 530 t

By H. Tamura

= 16,000 ton / 30 legs ~ 530 ton.= 16,000 ton / 30 legs ~ 530 ton.
Thermal contraction < max. 55 mmThermal contraction < max. 55 mm
Total heat load to 4K ~ 0.34  kWTotal heat load to 4K ~ 0.34  kW
( 1/20 of stainless steel post)( 1/20 of stainless steel post)( p )( p )

(Carbon Fiber 
Reinforcement Plastic)

6.18

5.
66

3
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Wide maintenance ports Wide maintenance ports Wide maintenance ports Wide maintenance ports 

23 / 25



Fusion Research Network

Blanket system integration Blanket system integration 
by broad R&D collaboration activitiesby broad R&D collaboration activities
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Concluding remarksConcluding remarksConcluding remarksConcluding remarks
1. Helical reactor is superior in steady state operation and

Reduced neutron wall loading < 2MW/m2 with long-life blanket concept, 
High density operation with reduced heat load on divertorHigh density operation with reduced heat load on divertor.

2. On the 3D design, a simply defined blanket shape can be compatible with the 
ergodized magnetic layer which is essential on both of divertor and α-heating. 

3 This simple methodology on LHD type reactors can be used for design optimization3. This simple methodology on LHD-type reactors can be used for design optimization 
towards DEMO, which is economically comparable to Tokamak.

4. The design parameters of FFHR2m2 have been totally improved, where a new 
ignition regime at SDC is an innovative alternativeignition regime at SDC is an innovative alternative.

5. The large scale SC magnet system and their support posts are conceptually 
feasible.

6 Large R&D progress has been made on blanket and magnet materials6. Large R&D progress has been made on blanket and magnet materials. 
7. The next key work is to realize the DPSS divertor concept compatible with 

replacement scenario and neutronics issues on TBR and nuclear shielding for SC 
magnets
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magnets.
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