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Purpose

• In a future laser fusion reactor with liquid wall, about 
10 kg of liquid metal will be ablated after every laser 
shot.

• It is expected that the ablated vapor condenses on 
the opposite wall by cryogenic effect.  However, 
stagnation of evaporated vapor and formation of 
aerosols are not clear.

• The goal of this study is to make reliable scenario on 
the chamber clearance through simulation and 
elemental experiments.
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Outline

• Introduction of KOYO-F
– Critical issues of KOYO-F chamber and past 

achievements

• Aerosol formation

• Hydrodynamic view of ablation

• Summary
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KOYO-F is a commercial or very “close to”
commercial power plant.

System specification
Thermal out put       3664 MW
Electric power         1280 MW
System efficiency           33 %

Laser
Cooled Yb:YAG Ceramic

1.2MJ/16Hz
(1.1MJ+100kJ)

Efficiency     13.1% for Main
5.4% for heating

11.8% in total
Plasma
Gain                                  160
Fusion Yield                200MJ

Reactor
4 modular reactors

First wall             Liquid LiPb
Cascade flow
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KOYO-F with 32 beams for compression and one 
heating beam

Parameter of KOYO-F
Number of 
beams

32 
(compression)
1 (heating)

Inner size of 
chamber

3 m in radius
12 m in height

Thermal load 
on the first wall

1.8 MJ/m2

Tilted first panels to make 
no stagnation point of 
ablated vapor
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Critical issues in chamber 1
(from J-US WS on reactor 2007)

• Probability for direct exposure of the same place <1/103 – 1/104

– If we assume maintenance period of 2 years and acceptable erosion of 3-mm-thick, the 
probability for direct exposure of the same place with α particles must be less than 1/104.

– Improve flow control, material selection, chamber radius

• Protection of beam ports
– Our first plan was to keep the surface temperature less than surrounding area to enhance the 

condensation.  But this would not work because of the small temperature dependence of 
condensation.

– Porous metal saturated with liquid LiPb
– Magnetic field

Dry surfaceLiquid LiPb

Dr Kunugi demonstrated a stable flow >3 mm using water

Dr. Kajimura showed protection of the 
beam  port by a 1T magnetic field.
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Critical issues in chamber 2
(from J-US WS on reactor 2007)

• Although tilted front panels will reduce the stagnation 
to 1/103, few gram of LiPb vapor will stagnate at the 
center.
– Off set irradiation,

– Large ( ~3 μm) particles due to RT instabilities and related 
secondary particles

Stagnation position
Fire position
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Outline

• Introduction of KOYO-F
– Critical issues of KOYO-F chamber and past achievements

• Aerosol formation
– Simulation code
– Experiment to check code
– Aerosols
– Influence on target injection

• Hydrodynamic view of ablation

• Summary
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We estimated the ablation process using 
ACORE.  Stopping power in ionized vapor 

was calculated.

Atomic Process Code

Ionization Degree, Population, Energy Level

Stopping Power Code EOS Code Emissivity and Opacity Code

Stopping power Ionization Degree
Pressure, Specifiic heat

Emissivity, Opacity

ACORE (Ablation COde for REactor)
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Integrated codes for aerosol formation
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ACONPL
(Ablation with CONdensation of a Plume)

Population,  
Energy Level of electrons

Code for atmic process of Pb 

Pressure, 
Specific heat

Code for 
spectrum

Radiation

Absorption

Stopping
power

Code for 
equation of 

state 

ACONPL
( Ablation with CONdensation

of a Plume )

Ionization rate,

Code for 
stopping 

power

Phase changes

Hydrodynamic process
And radiation process

Initial boundary conditions for ionization, 
specific heat, pressure, stopping power and 

radiation processes

Interactions of radiations from 
burning plasma with metal 
vapor, liquid, and plasma

Phase changes
(Condensation process)

Atomic process code was New Screened Hydrogen Model with l-splitting that was originally developed by 
Nishikawa of Okayama University
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Condensation of plume (Vapor to liquid)

◯The boiling point is given as a function of the density.

Tc ρ( )= q Φ ρ( )
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q : Latent heat of evaporation
（Kelvin)

◯Condensation of plume based on improved Luk’yanchuk Model 

The temperature of cluster

Ratio of clusters to the ablated materials

The size of cluster

Super Cooling Parameter

Condensation rate（y=0, vapor, y=1, liquid droplet）

Reference
B. S. Luk’yanchuk, S. I. Anisimov et. al., 

SPIE 3618 (1999) 434-452.
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ACONPL (Ablation with CONdensation of a PLume )
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q : Latent heat of evaporation（Kelvin)

○ 1-fluide, 2-temperature-model

 
dρ x ,t( )

dt
= −ρ x ,t( )∇⋅ v x ,t( )
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dt
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Pnv : viscosity

The 4th term comes from heat release by condensation.
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It was assumed that; 1) two clusters became one after the collision.
2) Clusters move with surrounding gas.
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To check the code, 10mm thick Pb 
membrane was heated and aerosols were 

captured on a witness plate.

Depth of ablation
(μm)

Heating time
(μs)

Areal thermal load
(MJ/m2)

Temperater
(K)

This experiment 10 23.0 1.6 4000-6000

KOYO-F 12.3 0.1 0.4 15000

10μm PbGlass

1cm

0.5cm
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Diameter of particles agreed with simulation 
result.

Particles on continuous membrane

The continuous membrane was formed with 
leading, super-cooled plume.



ILE, Osaka

Thermal load on the first wall of 
KOYO-F (@r=3m)
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Density, Temperature and velocity profile of 
ablated material.

102

103

104

105

106

107

108

109

0.0 0.5 1.0 1.5 2.0

alfa
alfa (debri)
deuterium
tritium
proton
herium3

In
te

ns
it

y 
(W

/c
m

2  )

Time (μs)
1016

1017

1018

1019

1020

1021

1022

1023

0

1 104

2 104

3 104

4 104

-1 0 1 2 3 4 5

Time = 2000 ns

Number 
Density

Te

v (m/s)

x (cm)



ILE, Osaka

Due to after glow heating, clusters in leading plume 
evaporate and become smaller.
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When the leading edge of plume reached the 
chamber center,  the number density and the 

average diameter were 1010/cm3 and 60 nm, 
respectively.
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Growth of particles after collision of plumes
(The scale length for stagnation at the center is 

about 3 cm)

P 8
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When counter plumes collide at the 
center, the temperature becomes 5000K.
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After collision, clusters disappear due 
to heating by PdV work.

P 11

Collision at the center makes hot, low density zone and 
clusters in the zone disappear due to evaporation.

We need not worry about condensation.
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Number density at the next target 
injection is estimated to be 107/cm3.
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If there is no interaction 
with counter plume, 
clusters in this region will 
disappear after collisions 
with the opposite wall.

Clusters in this region 
expand to chamber volume 
before next target injection.

The resulting nc at the next 
target injection is;50 μm

8 X 106 /cm3
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Influence of aerosols on target injection 
can be ignored.

Chamber center Wall

Nc=107 /cm3

3m

Total mass of aerosols in the column

1.06 x 10-4 g

Target mass
Aerosol mass = 2 x 10-4

(0.4 μm in the thickness of deposition layer)

We can ignore the influence on 
target trajectory.
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Outline

• Introduction of KOYO-F

• Critical issues of KOYO-F chamber and past 
achievements

• Aerosol formation

• Hydrodynamic view of ablation

• Summary
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Laser irradiation simulates for α-particles 
heating from backside of metal layer

Laser

7 ~ 10μm

Heating 

Glass plate Coated lead or tin

(Lithium was ignored
because of light weight)

Laser

25

Alpha
particles

dE/dx

8 – 10 μm

This 
experiment

KOYO-F

Energy density 5 MJ/m2 0.35 MJ/m2

Pulse width 15 ns 50 ns
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Experimental setup.  Laser-scattering 
measurement was used to observe 
flying situation of metal

Punch out laser

50 mmProbe laser

2×10-4 torr

Nd:YAG laser
Intensity: 0.5 – 1 GW/cm2

Spot size : 700 - 800 μmφ

Pulse duration : 15 ns

Cylindrical
lens

CCD camera

Scattered
lights

Target
(glass plate with 
coated tin or lead)

Line
focus

269 μs 12 μs15 μs

Laser

Glass plate

Dot target
Diameter：φ500 μm
(smaller than laser spot size)
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Time resolution：7.5 ns

Dot target propelled forward without 
large divergence angle
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Target flying 
direction

Dot tin  9μm 

2μs   4μs    6μs    8μs  10μs  12μs

5mm
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Targets were propelled forward 
without large divergence angle

This result indicates the 
tilted-front-panel concept 
works well.
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=
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(Similar to simulation) 

1.0 ~ 1.5 km/s @ 10 μm thickness
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250 ~400 m/s @ KOYO-F

0.35 MJ/m25MJ/m2
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Spouted gas and small particles, and 
large particles were detected at 10-
mm away from glass plate

10 mm

2μs   4μs   6μs     8μs   10μs  12μs

500μm

6μs

80
0μ

m

9μs 12μs

Averaged density
2×1018 (cm-3)

29

15μs

Diameter
~10 μm

Gases

Gases 
small 
particles

Large 
particles

Divergence<6 deg
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Laser irradiation induces RT instability 
and break up solid thin surface, generates 
gas clusters and large particles

Dot target  

Laser

High speed
gases  

RT Instability

Gas,
clusters

Small
particles

Large
particles

High density 
columns

Glass plate

Depend on 
thickness of target
etc.

λ

30
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Summary

• The growth of clusters are calculated until the collisions of 
plumes at the center.  The expected diameter is less than 
150 nm.

• After collisions of plumes, the temperature becomes 5000K 
keeping the same density.  Clusters vanish in this hot 
region.  We need not worry about condensation of ablated 
materials at the stagnation point.

• Large diameter ( 3 μm) particles would be formed during 
ablation process.

• Remaining issue
– Discussion on the secondary particles are necessary.

3μm
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Future works:
What happens when small, high speed 

droplet collide with the surface?

In research on milk crown, the height of crown depends on the 
depth of pool. (from H. Guji of Kyoto Univ.)

9mm7mm5mm3mm2mm1mm

Collisions of droplets ( 3 μm) with a shallow liquid metal 
layer (10 μm) would happen on the ceiling of KOYO-F.

2 Secondary particles

1. Structure of stagnation point at the next laser shot.
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• Thank you for your attention!
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