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1. Introduction

e ”"SlimCS” aims Py, <3 GW (P, .= 600~700 MW) with A=2.6 and reduced-size CS.
= Power exhausting to SOL is 5-6 times larger and R is smaller than ITER.

e Engineering requirement of power handting with W divertor target and pressurized

water-cooling is 5-7 MWm~=.
= Power handling is the most important issue for the reactor design.
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Divertor concept for DEMO reactor

Power handling in S/imCS is investigated using SOLDOR/NEUT2D code, where
design concept for the ITER divertor is applied/extended to the DEMO divertor:
formation of partially “divertor detachment” (T~ a few eV) is a key for the power
handling
(1) Divertor leg and inclination of the target are larger than ITER
= increase radiation, CX & volume recombination at upstream, reducing gtet,
(2) V-shaped corner = enhance neutral density at the separatrix
(3) impurity seeding such as Ar (Ne, N,, Kr, Xe, etc)
(4) Agep mig=3 €M is guided into the divertor for particle control in the divertor
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2. Simulation of power handling in the SIimCS divertor

Results from 2008 IAEA FEC, Geneva: FT/P3-10 H. Kawashima, et al. “Divertor Design Study
on Compact DEMO Reactor for Handling of Huge Exhaust Power”
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UIRRENDNDWW S
oultouiouioun

1
5.9 R (n

TeTine_dpl_o500W

x (a-1)

5 ; ;

I : :
& A, Outer divertor |

a ’r\‘  target

Qdpl_o run500W
1

>
12

(a-2)

I
,,,,,,,, 8 1\ Outer divertor
g | target
3 i+ neutral (total) |
. + radiation

i+ recombination
+ ioni

electron '
&, conD+conV |

N

0 0.1 0.2
distance from separatrix A

Case-1: gas puff rate and impurity fraction
similar level to ITER EDA:

D,/T, puff: I', x=1x10%3s* (200 Pam?s™)

Ar fraction: (na/m).qi=2% , (Ma/ M) egge-s0.=1%

applying non-coronal model:P 4 = L(T,T,) n,n
200

< Divertor pumping speed at exhaust duct:

Soump= 200 m3st is given.

e

100
e At the inner divertor target, divertor
is detached and g®"¢t < 5 MW/m?2.

0

e At the outer target, significantly high
temperature at the strike-point:

peak T_,~50 eV and T,~200 eV, giving
severe peak heat load ~70 MW/m?2.
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2.1 Effect of the divertor geometry: V-shaped divertor

e Case 2: Design concept for the ITER divertor, “V-shaped divertor”, is investigated:
Detachment occurs at the separatrix and Peak heat load is reduced to 27 MW/m?.
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e Radiation loss at the outer divertor
(P...°>?")is increased at upstream of
the strike point from 85 to 142 MW:
Total P, (edge+divertor) = 425 MW

(P.,,£99¢~160MW, P, A~260MW)

eDivertor recycling flux (I'°9V) is
increased from 3.7x10%*to 4.2x10%4s1
*Peak T,~20 eV ,T.~90 eV are smaller by
the factor of 1/2-2.5.
= Peak heat load can be reduced to
27 MW/m?2.
eConduction/convection heat load is

reduced, while recombination and
radiation power load increase in the



2.2 Gas puff and Impurity (Ar) seeding in V-shaped divertor

Additional gas puff/ Ar seeding will enhance divertor radiation for g, ., ~ 9 MWm™

* Gas puff (I, ¢) is increased to 2x10%s™
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2.3 Power handling in the detached divertor

* Peak heat load in the detached divertor with (n, /n;),4, =5% is determined by
Radiation/Recombination/ Neutral flux and their distributions in the divertor.

e Large heat load will extend in a wide divertor area, and P,,/P, . increased to >90%
= P, = 500 MW would be larger than handling power in this divertor size.

Modelling (understanding) of atomic/molecule/impurity process and their transport

as well as thermal stability of the divertor plasma under the high recycling condition

should be improved.
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3.1 Issues for divertor design: impurity seeding

[
Large power handling at the SOL and Edge is required for DEMO operation:
P.q° 0290 ~160MW (P, *0ed9e/P  ~33%) for the simulation of (n,,/n})e4ee=1%

r
* Power handling at the SOL and Edge such as increasing n,,./n; and P, 0ed9¢
(distributions of impurity ions, n_ and T,), is affected by those in the divertor.

out

e Operation of the large P, ,°0"/¢%¢ plasma (and high density) will be restricted also
by compatibility with the core plasma performance.
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Results from 2008 IAEA FEC, Geneva: EX4-4Ra, N. Asakura, et al. “Investigations of impurity
seeding and radiation control for long-pulse and high-density H-mode plasmas in JT-60U”



3.2 Issue for divertor design: dilution & He exhaust

e Ar seeding (n,,/n_=0.22 =0.44%) reduces Power to SOL (P,, s, = 600 = 480MW),
with expense of lowering Fusion power: P, .,= 3.0 = 2.7GW (-10%).

e He concentration (n,./n =5 =10%) largely reduces P;;,,=3.0 = 2.2GW (-27%)
He exhaust is another important issue.

e Particle control should be determined for optimizing the divertor performance:
He exhaust requires divertor pumping

< Divertor detachment is formed under high neutral pressure and radiation loss.
4
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4. Summary and issues for the DEMO divertor

=500MW) for the SIimCS divertor was investigated:

Intense Ar seeding (n,/n,~5%) in the Long-leg and V-shaped divertor produces the
detached divertor (P,,,°°¢%9¢/P, .~33% and P, /P, . > 90% )

= target heat load q,,.."9MW/m?, where radiation and neutral flux are dominant,

e Huge power handling (P

out

out rad out

while Engineering requirement for W target & pressurized water-cooling: 5-7MWm~.

Scenario of the huge power handling (divertor geometry and impurity seeding)
for P, .~ 500MW (P, ., ~3GW DEMO) in the ITER-size divertor is difficult.

out
Reduction in Py, is a practical design within existing techniques.

e Large power handling at the main SOL and Edge is required for the DEMO plasma:

Restrictions of the power handling (n;,,./n; and P, 5°"/2d¢) such as due to influence
of the divertor and degradation of core plasma performance should be determined.

 Particle control design should be optimized to satisfy the DEMO divertor functions:
He exhaust requires the large divertor pumping
~Formation of the detached divertor requires high neutral pressure and radiation.



Design parameters of SlimCS

u
u

Major radius, R,

Minor radius, a

Aspect ratio, A

Ellipticity, Ky

Triangularity, 04

Safety factor, qqs
Toroidal field, B;

Maximum field, B

maXx

Plasma current, l,

Plasma volume, v,

Density, <n_>

Peak density, n (0)

Temperature, <T_>

Peak temp, T,(0)

ne/nGW

Fuel purity

(Ngw =l /ma?)

56m
21m
2.6
2.0
~0.35
54
6.0T
16.4T
16.7 MA
935 m3
1.1x10%° m-3
1.6x10%° m-3
17 keV
28 keV
1
83.5%

He fraction, f,,

Ar fraction, f,,

Total stored energy, W,
Hot ion stored energy, W,
Total beta, <>

Hot ion beta, <f3,>
Poloidal beta, Bp
Normalized beta, B
Fusion output, P,
Current drive power, P,
Bootstrap fraction, fyg
Enhancement of t;, H89P
Enhancement of t;, HHy2

Fusion Gain, Q

M wall load, P,

Div. Peak heat flux

5%
0.23%
1,170 MJ
299 MJ
5.75%
1.38%
1.56
4.3
2,950 MW
60-110
70-80%
2.59
1.3
26-50
~3 MW/m?
10 MW/m?



SOLDOR/NEUT2D code simulation

e Coupling 2D plasma multi-fluid code and neutral MC code.
e Evaluation of major heat load on the target

qtarget = y'nd'ch'Td + nd' qd'Eion + f(Prad) + f(neUtral)

N

Surface-recombination radiation neutral
loss power load power load

Transport component
(electron&ion-
conduction/convection)

e Plasma boundary : r/a =0.95

e Input parameters:P_,, I,

e Fixed transport parameters: D=0.3 m?/s, x.  =x; ; =1 m2/s,

e Fixed particle exhaust parameters: Spump=200 m3/s, f —



Impurity and neutral treatment

ne=1x1 020 m-3 2007/06/13
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| o neT=1x10 s Impurity radiation: non-coronal model
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e Radiation loss power is evaluated by
W,=-n_n,L(T,).

7777777777777 | e LossrateL(T,)is used on
n.T,..=1x10%s/m3.
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Neutral reflection: W target model

08| D=>W* e Assumed W wall, which reflection

coefficients of particle and energy are
almost twice larger than that for carbon.
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Original concept of divertor plate

21 mm

RAFM substrate

ITER DEMO
Cooling tube Cu-alloy RAFM | Themm ::?(él:JCtiVity
Armor CFC/Be/W AL
Coolant water 100°C, 4MPa water 200°
Heat load < 20 MW/m? <10 MW/m2  |[4m 112 of ITER

Handle power of x6

-

Ultimate design w/o margins!



Possible modifications of the concept

* Coolant inlet temperature: 200°C - 290°C

* Avoid corrosions of F82H by radiation-produced hydrogen peroxide (H,0,)
H,0, starts to pyrolytically decompose at 240°C

* Avoid irradiation brittleness of F82H (lack of data at < 300°C)

Allowable heat flux: i |
Omax ~ 7 MW/m?
(Tcoolant = 290°C) 500i

T <1,200°C

SN 290°C < T < 550°C

* Coolant tube thickness: 1 mm - thicker as possible
Possible to increase the thickness to ~2mm if allowed to use F82H above 550°C



F82H cooling tube can be applicable for

the divertor
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