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Outline of talk

 Concept of SlimCS

 Divertor design

 Maintenance scheme



Concept of SlimCS



SlimCS  –– DEMO design

1 GWe　Electric output   Pe

2.95 GW　Fusion output   Pfus

16.4 T　maximum field  Bmax

2.6　Aspect ratio   A
2.1 m　Minor radius   a
5.5 m　Major radius  Rp

Blanket

ShieldCentral solenoid (CS)

“SlimCS”

Central Solenoid

0.35 m 0.7 m

CS



Impact of “slim CS”

only 50 GJ (Bmax= 16.4T)
ITER : 41 GJ (Bmax= 11.8 T)
SSTR : 140 GJ (Bmax= 16.5 T)

ETFC of SlimCS:

“Small-size CS reduces ETFC”

RCS = 0.7m

Construction cost

TF coils: 6,200 tons 
(cf. TFC of SSTR: 11,200 tons )

Virial theorem:    
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Why we can reduce CS size?

importantimportantIcsplasma shaping

ΔBcsScs

metric

Important but
not necessaryless importantV•sec supply

IP ramp phaseSteady stateRole of CS

Regarded as marginal extension 
of non-inductive CD technique

• Access to high βN

• ELM control (maybe)

Placing value on plasma shaping,
                         you can reduce CS size dramatically.

< 1%most of operation

Large SCS, waste of space!



Impact of CS size
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Systems code analysis shows
    1) a large impact of CS size on reactor weight
    2) broad minimum on A

SlimCS

Assumptions:

• Pfus = 3 GW
• HHy2 = 1.3
• κ, βN: A-dependent
• TFC stress. 800 MPa

• ΔΨ+/− = 38 Wb
• IpCS = 3.8 MA

Rcs = 0.7 m allows



Design parameters of SlimCS

10 MW/m2Div. Peak heat flux83.5%Fuel purity
~3 MW/m2Wall load, Pn1ne/nGW

26-50Fusion Gain, Q28 keVPeak temp, Te(0)
1.3Enhancement of τE, HHy217 keVTemperature, <Te>
2.59Enhancement of τE, H89P1.6x1020 m-3Peak density, ne(0)

70-80%Bootstrap fraction, fBS1.1x1020 m-3Density, <ne>
60-110Current drive power, PCD935 m3Plasma volume, Vp

2,950 MWFusion output, Pfus16.7 MAPlasma current, Ip

4.3Normalized beta, βN16.4 TMaximum field, Bmax

1.56Poloidal beta, βp6.0 TToroidal field, BT

1.38%Hot ion beta, <βh>5.4Safety factor, q95

5.75%Total beta, <β>~0.35Triangularity, δ95

299 MJHot ion stored energy, Wh2.0Ellipticity, κ95

1,170 MJTotal stored energy, Wtot2.6Aspect ratio, A
0.23%Ar fraction, fAr2.1 mMinor radius, a

5%He fraction, fHe5.6 mMajor radius, Rp

(nGW =Ip/πa2)



Selection of blanket materials

Multiplier

Breeder

Coolant

Structure • RAFM (F82H) – Japanese prime option of ITER-TBM

• ODS steel – premature

• Pressurized water
  (PWR condition: ~15MPa,285-325ºC)

• Supercritical water
  (~25MPa,280-510ºC)

• Li2TiO3
– good T recovery property, prime option of ITER-TBM

–compatible with RAFM but low ηth

• Li2O – concern about T recovery at high temperature

• Be

90%-enriched 6Li required because of reduced TBR

• Be12Ti

– can meet TBR ~ 1.05, but concern about swelling

– TBR not sufficient when used with Li2TiO3

– concern about corrosion of       RAFM



SC attainable Bmax ~ 16 T

• Nb3Al Rapid-Heating Quenching and Transformation

• HTS (Bi-2212) Bi2Sr2CaCu2Ox

Ag Bi2212

Candidates:



Only small increment of Bmax expected by HTS

RTF (m)

B
m

ax
 (T

)

structure

structure

S.C.
Ag

Cu
insulator coolant

Bi-HTS

Nb3Al

S.C.
Ag

Cu

insulator coolant

SS

450 A/mm2

600 A/mm2

2.2%

1.8%

86.7%

73.4%

Why we choose Nb3Al

RCS

RTF Bmax



Divertor Design



Concept of divertor plate

W mono-block armor

RAFM substrate

 ≤ 10 MW/m2 ≤ 20 MW/m2Heat load
water 200-300℃water 100℃, 4MPaCoolant

WCFC/Be/WArmor
RAFMCu-alloyCooling tube
DEMOITER

Thermal conductivity
1/10 of Cu

RAFM cooling tube

1/2 of ITER
Handle power of x6



Issues on divertor design

Heat Particle

Physics

Engineering

Source：Steady heat flux
                 ELM (I, II, III, …)
                 Thermal quench

φdiv < 10 MW/m2 Te
div <  10 eV

SOL: heat flux width

Radiative cooling:
                Detach / semi-detach / attach
                Control

Transport of Z

Gas Puff: D / Z

Compression & pumping:

                 Shape of divertor
                 Pumping speed

Heat flux: Allowance for heat removal

Reliability: Thin-walled cooling channel
                   Joint of the channel and armor
                   Crack, blister of armor

Erosion: Sputtering by D, T, He and Z

Defect: Blister
             Crack
             Irradiation damage
             Synergy

Prime target

Problem: Knowledge on them is premature



SOLDOR/NEUT2D analysis

SOLDOR/NEUT2D
mesh

for SlimCS

Reduced for convenience
          (actually, 550 MW)

Calculation parameters

          3   nAr/ni (%)
        0.3   D (m2/s)
          1   χe, χi (m2/s)
      ~200   Spump (m3/s)
       1.2   Γpuff (1023 s-1)
      460   Qtotal　(MW)

2D Fluid simulation of SOL and divertor



Result for conventional divertor

= 74.5 %

“detached”

“attached”

ne Te Ti

Wrad
Prad (SOL/divertor)

Pin

Radiative cooling by conventional divertor is limited

We need radiation of “~90%” to satisfy the target



Outboard qheat ~ 60 MW/m2  >> allowance

10 MW/m2

Inner leg Outer leg



Improvement by V-shaped corner

Original Modified
V-shaped corner

Outer leg
“Detached”

ne ~ 3 x 1021 m-3

Te ~ 2 eV



V-shaped corner shows prospect for <10 MW/m2

qheat for 
outer leg

Original Modified

Reduction in qheat by V-shaped corner



Maintenance scheme



Possible maintenance schemes

ITER

PPCS

Demo-CREST
SlimCS

In-vessel (module)

Large module Sector

• Reduction in N of in-situ cut/reweld of piping, required for high availability
• Each scheme has merits and demerits.
• No schemes have been proven so far!  Even in the case of ITER.



 Why we choose “sector transport”

Reason for NOT choosing
             “in-vessel” maintenance

 Difficulty in “front access”
    –– small clamp torque
             for supporting blanket

Reason for choosing
         “sector” maintenance

 “Flexible access”
• Can maintain
     complex torus configuration
• Can deal with unexpected troubles

 High availability expected
Minimize the number of 
           in-situ cut and re-welding

 Flexibility to upgrade blanket

VV blanket

Stub key

Bolt

Expand bolt by heating 

Bolting with 
small torque 

Cool down Hold down 
by shrunk bolt

Example of ITER

1

2

3



Torus configuration of SlimCS

re-welding



1) Sector-wide (τ ≥ 50 ms)

2) rw/a ≤ 1.3

3) Fins to cancel harmful
component of current

                        (Kameari shell)

gap 8cm gap 3cm

Comparison of shell performance

Eddy current
on shell 

180º

Harmful components cancelled

a
rW

conducting shellRequirements for shell

Conducting shell

Cu  ~ 1cm-thick

Kameari shellsimple cuts



Building of Reactor

Decay heat of used blanket

Interim storage

> 1mW/cc (first one year)

Hot cell

Replace BLK
during plant operation

Interim storage
Hot cell Reactor hall



Sector carrier

750 tons/sector

Wheel & roller bearing
~1,150 tons conveyable

OperationMaintenance

Spacer for shielding

Roller bearing
100 mmφ

Wheel
300 mmφ

(148)

Hydraulic jack　(64)
70 tons/jack



Retracting mechanism

Advantage: No counter balance required

Combination of screw rod & rotating screw nut
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motor

Rotation screw nut

Use the cryostat basement as fulcrum



Cask

1) Two seal doors (French window)
2) Negative pressure control
              a little lower than 1 atm
3) Sector carrier
4) Heat removal system
5) Rectilinear travel only

Cask door

Cryo door

Door interchangeable mechanism 

Functions

cask door

cryo door

Wheel & roll bearing



Transport of cask

Hot cell Reactor hall

Turn-tableHow to minimize the turning radius  

• Turn-table scheme (prime)
• Hovering (alternative)



TF coil turnover force

“Large port” for sector maintenance

          NOT allow to setup inter-coil structure

Maintenance port

Turnover force :

  

! 

l

Buckling :

Similarity to cantilever problem

      

! 

l =12m

Turn-over force: 10,000 tons/coil
Displacement: 1.25 m

(SlimCS)Large port is problematic!δ

FEM analysis



 

Support of TF coil turnover force

  

KEVLAR® rope

Rope assembly

24mmφ x100 turns

Supports 10,000 tons

Support ring

Support by “tension force”of ropes

Supports 10 tons x 100

• Easy of length-tuning
• Balanced loading

Concerns
  • torsion of cryostat
  • Seismic adequacy ?



Future Plan

 Torus configuration
       • Segmentation of blanket to stand EM forces by disruption

       • Assembly/disassembly procedure for remote maintenance

  Revisit design parameters
       • Plasma shaping

       • Magnet

       • CD systems

            • • • These are “common design issues” in BA

Expect contribution to BA


