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Topics from New Approaches
in Plasma Confinement Experiments in Helical Systems

 Advanced Helical (Stellarator/Heliotron) Concepts
– Quasi-Symmetry
– Quasi-Isodynamic (Quasi-Omnigeneous)

 Topics from Recent Plasma Experiments in
Helical Devices
– Configuration effects on NC/turbulent transport
– Progress in high-, high density steady state operation
– Divertor relevant experiments
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Helical (Stellarator/Heliotron) Concepts

Helical
Heliotron

Helical Windings
w/o TFC

Planer Axis System Helical-Axis Heliotron
Helical Winding + TFC

Quasi-Isodynamic
(Quasi-Poloidally Symmetric)

Optimized
Helical Heliotron LHD

H-J

(H-E, CHS), U-3M

Spatial Axis
System

Stellarator
Concept

Heliac
Hellically displaced

TFC + CC

Helias

Quasi-Helically
Symmetric

Quasi-
Axisymmetric

Quasi-
Isodynanmic

Planer Axis
System

Stellarator
Helical Windings

with TFC

Modular Coil

Syst
em

HSX

TJ-II, H-1NF
TU-Heliac

W7-AS

W7-X
Spatial Axis

System

(construction)

(construction)

QPS
(design)

NCSX

1950s today

Kyoto Original

Quasi-Pol.
Symmetric



Heliotron J IAE, Kyoto University

Helical ripple leads to high transport
in conventional stellarators.

 How to reduce it?

• Particles trapped in helical ripple have net
radial drift in conventional stellarators.

• Electric field can mitigate scaling.
– Ambipolarity constraint on NC fluxes can create Er.

• Advanced helicals reduce the ripple
losses through recovering of symmetry or
tailoring the field harmonics.



Heliotron J IAE, Kyoto University

World-wide research activities
for optimization of helical systems
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H1-NF (ANU, 1993~)
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Helical-Axis Helical Devices in the World

装置図

ヘリアス配位の改良型。

自発電流の低減とヘリア
ス配位の最適化を追求す
る超伝導大型実験装置。

準ポロイダル対称系

（ＱＰＳ）の閉じ込め性能
の概念開発。
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る閉じ込め性能の原理

検証。
<> ～ 4%

柔軟な磁場配位制御

によるヘリカル軸ヘリオト
ロンの最適化を追求。
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Topics from New Approaches
in Plasma Confinement Experiments in Helical Systems

 Advanced Helical (Stellarator/Heliotron)
Concept

 Topics from Recent Plasma Experiments in
Helical Devices
– Configuration effects on NC/turbulent transport
– Progress in high-, high density steady state

operation
– Divertor relevant experiments
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Er driven by Electron-Root Scenario
Internal transport barrier formation

observed in CHS experiments.

 The electron-root condition is
found inside ~0.6 creating
the large Er-shear regime.

 Steep Ti-gradient is found in
Er-shear regime.

 Te-gradient also increases
inside  ~0.4.

 HIBP measurements showed
suppression of turbulent
transport with the internal
transport barrier formation.
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Effects of Configuration on NC transport: Exp. from HSX
Significant differences have been measured
between plasma profiles w/ & w/o QHS. (I)

 Mirror fields are added for symmetry
breaking in HSX.

 Density profiles are peaked w/ Quasi-
Helical Symmetry (QHS),
hollow when symmetry is broken.
– Discharges shown:

~50 kW of ECH power,
central deposition

– higher temperature, more peaked
density profile with QHS.

 Hollow/flat ne-profile in w/o QHS is due
to thermodiffusion, which is reduced
with QHS

D. Anderson, et al
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Effects of Configuration on NC transport : Exp. from HSX
HSX experiment also shows the effectiveness of the

symmetry recovering to reduce the thermal diffusivity.

 Thermal diffusivity is
reduced in QHS.
– at r/a ~ 0.25,

e : 2.5 m2 /s in QHS,
4 m2 /s in Mirror

– Difference is comparable to
neoclassical reduction
(~2 m2 /s)

 Two configurations have
similar transport outside
of r/a~0.5.
 anomalous transport dominant

D. Anderson, et al
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Effects of Configuration on High Energy Particles : Exp. from HSX

Soft X-ray, Hard X-ray Emissions indicate
fast electrons are better confined in QHS.

 Soft X-ray (600 eV-6 keV) emission;
QHS >> Mirror

 Hard X-ray flux: QHS>>Mirror;
decay time longer

 Indicates these fast electrons drive
Alfvénic modes.

– No mode observed in Mirror
Configuration.

D. Anderson, et al



Heliotron J IAE, Kyoto University

Bumpy (mirror) component is essential
to realize the quasi-isodynamic feature

in Heliotron J.

 To investigate the bumpiness effects on
fast-ion confinement,
▬ the bumpiness was varied by controlling

the current ratio of the two toroidal coil
sets under the fixed condition of
(a)/2=0.56.

▬ The fast-ions are created by ICRF or NBI.

(a)/ 0.56

b

t

h better worse
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Configuration effects on fast-ions confinement in Heliotron J

Better confinement of fast ions by ICRF
in higher bumpiness configuration

 For ICRF heating, the high-energy ion tail
temperature increases with b.

 Power-moderation experiments indicate lower
loss-rate for higher b configuration.

 Due to better confinement of fast-ions, higher
increment of the bulk ion-temperature is
observed for higher b configuration.
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 The b-dependece of BS current is consistent with the predictions from SPBSC calculations.
 For ECCD, the ripple structure at the resonance region is important.

ECCD control
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turbulence transport and improved modes
PNBI-Dependence of Delay Time of L-H Transition

Comparison between CHS and Heliotron J

Delay time of H spontaneous drop after the start of NBI
becomes longer as decreasing NBI power.

The edge field structure (rationals?) might be important
for the transition. T. Minami, S. Kobayashi, et al
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turbulence transport and improved modes
Confinement and magnetic topology

ITB in TJ-II

 Positioning a low order rational (e.g. 3/2,
4/2, 4/3) near the core (using, e. g., induced
OH current or ECCD) triggers an ITB in a
controllable way.

 The rational must be inside the plasma to
trigger the transition.

 Change in Er is observed near the rational.
 So far no cases found where the e-ITB

triggered by 5/3.

T. Estrada, et al
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 Super Dense Core operation
enables a new reactor scenario.

Central density : 51020m-3

Central temperature : 0.85 keV
 exceeding 1 atmospheric pressure

Magnetic field : 2.64 T
 Central beta : 4.4 %

: > 5 % at B of 1.5T
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progress in high- performance

High –plasma studies in LHD

 Degradation can
be attributed to the
change of effective
helical ripple due
to Shafranov-shift,
not on MHD effect.<> > 4 % was sustained for >> 10E

Goal : 5 %
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self-stabilization
 realization of

high- plasma,
 needs 3D

equilibrium
reconstruction
technique.
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 Degradation in high  regime will be improved by
dynamic Rax control in nearest future.
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Request for 3-D Equilibrium Reconstruction is
Increasing in Helical Experiments.  V3FIT

 Equilibrium reconstruction
is invaluable for tokamaks
– Equilibrium Control
– MHD Stability and

Confinement Studies
⇒ Example: EFIT code

 Helical Trends
– Higher beta
– Bootstrap current

⇒ Equilibrium flux
surfaces are not
vacuum flux surfaces.

MHD Equilibrium
 Input:

– External B Field
– Current profile
– Pressure profile
– Toroidal flux

Equilibrium Reconstruction:
 Use observed diagnostic

signals to determine:
– External B Field
– Current profile
– Pressure profile
– Toroidal flux

 Output:
– Flux surface

geometry
(Key to further
computations)
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3-D Equilibrium Reconstruction requires
a sophisticated flux loop system.

 Design of Ex-Vessel
Flux Loops in NCSX

 Both SS fields with
n=3·j and periodicity-
breaking non-SS
fields with |n|=1,2,
4,5, ... must be
diagnosed.

N. Pompherey, et al
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Several Divertor Concepts are proposed
for Helical Devices
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progress in long-pulse operation

Steady State Operation in LHD

 Steady state operation by ICRF
demonstrates the high potential
of helical systems towards a
currentless steady state reactor.

 Minority heating ICRF accelerates
perp. component of ion velocity
effectively up to MeV range.

– demonstrates the high capability
of LHD to confine high energy ions.

 Record of input energy to high
temperature plasmas in FY2005
1.6GJ : 490kW  3268s

 Planning longer pulse with
higher heating power

3 MW for 1 hour

21st FEC (2006)
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ParticleParticle/heat/heat loadload onon thethe divertor platesdivertor plates
are dispersed byare dispersed by RRaxax sweepingsweeping..

Main divertor trace is switched from
inboard to outboard side by a small change
of Rax (R/R~0.8%)

UPPER UPPER

Rax = 3.67m Rax = 3.7m
Z=0

Temp. of div. tiles saturates
at a tolerable level

21st FEC (2006)

Probe

Projected Shape of Divertor Tiles
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The shift of the diverted plasma footprints
is observed during a single discharge.

 The shifts of Rtarget and RDPA are closely
related to the change of plasma current.

– In #23624, Wp and Ip were kept increasing
up to almost the end of discharge, but in
#23635, Ip started to decrease at t ~ 240 ms
while Wp did not decrease and was kept
almost the same value until the end of the
NBI pulse.

– For #23635 discharge, the inward shifts of
Rtarget and RDPA were observed until t
~ 240 ms and they started to change the
direction of shift for t > 240 ms, i.e. coming
back to the values at the initial phase of the
discharge.

 This experiment points out
– the importance of current control to fix

the divertor plasma position in a low
shear helical device,

– the possibility of "divertor swing" for
the divertor particle/heat load reduction
by controlling a small amount of
plasma current.
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MODEL CALCULATION (HINT2)
Current Effects on /2 x-point control.

Again, we need 3D ER!

<> ~ 0.32 %, p=p0(1-s2)2

(a) j = j0(1-s)8, Inet = +2.0 kA
(b) j = j0(1-s)8, Inet = -2.0 kA
(c) j = j0(1-s4)2, Inet = +2.0 kA
(d) j = j0(1-s4)2, Inet = -2.0 kA
(e) j = j0(60(1-s2)s2-5(1-s2)),

Inet = +2.0 kA
(f) j = j0(60(1-s2)s2-5(1-s2)),

Inet = -2.0 kA

r/a (=s1/2)

current profile model
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Since the value of vacuum rotational transform is close to
the natural resonance condition, even a small change in
the edge rotational transform by a small current can make
a big change in the plasma radius, i.e. in the x-point.
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Divertor swing by a small current drive
in W7-X or other helicals?
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Topics from New Approaches
in Plasma Confinement Experiments in Helical Systems

 Advanced Helical (Stellarator/Heliotron) Concept
– Several advanced concepts are experimentally examined.

» Topics from recent plasma experiments in helical devices are
reported.

• Configuration effects on NC/turbulent transport
• Progress in high-, high density steady state operation
• Divertor-relevant experiments

 Helical research activities in the world contribute to
– assess the attractiveness of helical systems

» a disruption free, high density (no GW-limit) steady-state
reactor

– advance understanding of 3-D plasma
» for basic fusion science relating also to tokamaks & ITER
» for physics of non-linear/complex-systems in the natural world
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