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Fast Track : the next step
Institute of Advanced Energy, Kyoto University

Fusion study  is in the phase to show a concrete plan for Energy.
-Power plant design and strategy following ITER are required.

Common understanding
・Resource constraint (Energy)
・Global warming problem (Environment)

・Growth in developing countries (Economy)

Energy Demonstration in 2030? Technical feasibility

Combined Demo-Proto steps Social feasibility

Strategy varies in each Parties due to different social requirements.
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Fast Track Discussion in Japan
Institute of Advanced Energy, Kyoto University

Evolution required 
In a same facility

Drawn from Fast track working group in Japan, 2002,Dec.
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Socio-Economic Aspect of Fusion

・Future energy must respond to the demand of the society.
・Social and Economical feasibility of fusion depends on
high temperature blanket and its feature.
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Near Future Plants

-Reduced Activation Ferritic steels (RAFs) are expected as 
blanket material candidates.

-Considering temperature range for RAFs, 500 C  range 
is maximum, and desirable for efficiency.

Power Plant Design

-From the aspect of thermal plant design,  
ONLY supercritical water turbine is the available option 
From fire-powered plant technology.

-No steam plants available above 650 degree C.
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Thermal plant efficiency

Direct cycle turbine train generates 1160MW of electricity.
Thermal efficiency is estimated to be 41%.
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Comparison of Generation Cycles

Other thermal Plants:
BWRs – 33% PWRs – 34%   
Supercritical Fire – 47%
Combined gas turbine - >60%

direct indirect            He gas

Main steam pressure 25MPa         16.3MPa          10MPa
Turbine temp.               500℃ 480℃ 500 ℃
Coolant flow rate 1250kg/s   1260kg/s          1865kg/s
Vapor flow rate              1250kg/s    1037kg/s            908kg/s
Total generation            1200MW    1090MW          1028MW
Thermal efficiency           41.4%          38.5%              35.3%
Technical issues tritium in steam           expansion  

coolant         generator       volume



Findings
Institute of Advanced Energy, Kyoto University

-Supercritical water cycles is desirable and possible
(technically difficult).

- No gas turbine system is effective in temperature ~500 C.
- With steam generator, gas cooled is less effective than water.
- Plant design limited above 650 C.  

Possible Advanced Plant Options
-High temperature cycle can be planned with He gas turbine at 
~900 C. 
-Only dual coolant LiPb blanket has possibility for high 
temperature in ITER/TBM.
-At high temperature, use of heat for hydrogen production
may be an attractive choice.

High temperature material does not guarantee economy.
Improvements may be required in the DEMO generation.



Fusion Contribution with hydrogen
Institute of Advanced Energy, Kyoto University
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Hydrogen Production by Fusion

Fusion can provide both high temperature heat and 
electricity
- Applicable for most of hydrogen production processes

As Electricity
-water electrolysis, SPE electrolysis : renewables, LWR
-Vapor electrolysis : HTGR

As heat
-Steam reforming:HTGR(800C), 

-membrane reactor:FBR(600C)
-IS process :HTGR(950C)

-biomass decomposition: HTGR

Institute of Advanced Energy, Kyoto University



From 3GW heat efficiency electricity Energy
consumption

Hydrogen
production

300C-electrolysis 1GW 28 6kJ/ mol 25 t / h
900C-electrolysis 1 .5GW 23 1kJ/ mol 44t /h
900C-vapor electrolysis 1 .5GW 18 1kJ/ mol 56t /h

33 %
50 %
50 %

900C-biomass ー ー 60 kJ/ mol 34 0t / h

Energy Eficiency

◯amount of produced hydrogen from unit heat
・low temperature（３００℃）generation
→ conventional electrolysis

・high temperature（９００℃）generation
→ vapor electrolysis

・ high temperature（９００℃） → thermochemical
production

Institute of Advanced Energy, Kyoto University



◯Processing capacity: 3GWt
・2500t／h waste             340t of H2

2500 t/h

H2 340 t/h

600℃

Fusion
Reactor
3ＧＷｔｈ

biomass
CO 2.4E+06 kg/h
H2 1.7E+05 kg/h

CO2 3.7E+06 kg/h

Chemical
Reactor

Heat exchange,
Shift reaction

cooler

Turbine

Steam
(770 t/h)He

1.38E+07 kg/h

H2O

Institute of Advanced Energy, Kyoto University
Use of Heat for Hydrogen Production

1.3x106 fuel cell vehicles (6kg/day)
or 6.4 GWe (70% fc)
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POWER BLANKET (example)
Institute of Advanced Energy, Kyoto University

High Temperature
High Pressure
Fine tubings
Tritium Production

1st wall

Cooling tubes

780K supercritical water
Li ceramic pebbles
He/H2 sweep for tritium
recovery

Tritium Permeation could be ~100g day
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・ Normal tritium will be dominated by release from coolant
・ Largest detritiation system will be for coolant 
・ Fusion safety depends on ACTIVE system. 
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・Detritiation for power train will  depends on blanket types.
・Normal detritiation for coolant will handle emergency spill.
・Safety control with active system is not site specific.

Institute of Advanced Energy, Kyoto University
Generalized detritiation system
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Processes large throughput, lower concentration
Controls environmental release
Operational continuously (including maintenance)

Detritiation systems of Plant
Institute of Advanced Energy, Kyoto University

Air Detritiation :
- 1000 m3 / hour,  possibly ci/m3 level
- leak from generator, secondary loops, hot cell

Water  Detritiation : (isotope separation)
- 100 m3 / day,  possibly 1000 ci/m3 level, 100g/day?
- driving turbine

Solid Waste  Detritiation :
- 1 ton / day,  possibly g / piece?
- materials (lithium, berylium, Steel) recycle
- needed both for resource and waste aspects.



TRITIUM IS CONFINED WITHIN
ENCLOSURES AND
DETRITIATION SYSTEMS

Power train will be driven with 
tritium containing medium.

For gas driven system, 
large Expanson volume 
may be needed.

Institute of Advanced Energy, Kyoto University
Tritium confinement
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High temperature blanket will 
require improved permeation 
control.

Pressurized gas may require 
additional expansion volume.
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Findings
Institute of Advanced Energy, Kyoto University

-Fusion plant detritiation will be dominated by power
plant configuration.
- Normal tritium release will be controlled actively.
- Off-normal spill can be recovered with normal detritiation.
- High temperature plant will require improved tritium system.

-Measurable tritium will be released in airborne form.
-Tritium accumulates in environment (far smaller natural BG).
-Ingestion dose will be dominant.
-For long run, C-14 may be a concern.



Conclusion

Fusion development is in the phase to study market
・Fusion must find customers and meet their requests. 
・Fusion must satisfy environmental and social issues.

Institute of Advanced Energy, Kyoto University

Development of advanced blanket is a key issue for fusion
・Economy - not just temperature, but to maximize market 
・Environment - not just low activation, but best total cost

and social value / least risk(Externality)

Development strategy (road map) for blanket is needed. 
・ITER and DEMO require 2 or more generations of blankets.
・staged improvement of blanket is planned with water-PB,
and LiPb dual coolant concepts.



Conclusion 2

Possible blanket improvement
・Independent from large increment of plasma

Institute of Advanced Energy, Kyoto University

・Continuous improvement
can be reflected in blanket
change.

(Improvement in DEMO phase)

・Multiple paths to meet 
various needs are possible.

・Flexibility in development of
entire fusion program is
provided by blanket
development.
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