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Fusion study is in the phase to show a concrete plan for Energy.
-Power plant design and strategy following ITER are required.

Common understanding
- Resource constraint (Energy)

- Global warming problem (Environment)
- Growth in developing countries (Economy)

Energy Demonstration in 20307 Technical feasibility

Combined Demo-Proto steps Social feasibility

Strategy varies in each Parties due to different social requirements.



Fast Track Discussion in Japan
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- Future energy must respond to the demand of the society.
- Social and Economical feasibility of fusion depends on
high temperature blanket and its feature.
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Near Future Plants

-Reduced Activation Ferritic steels (RAFs) are expected as
blanket material candidates.

-Considering temperature range for RAFs, 500 C range
IS maximum, and desirable for efficiency.

1

-From the aspect of thermal plant design,
ONLY supercritical water turbine is the available option
From fire-powered plant technology.

-No steam plants available above 650 degree C.



Flow diagram of indirect cycle
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Reactor
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direct Indirect
Main steam pressure, 25MPa 16.3MPa 10MPa
Turbine temp. 500°C 480°C 500 °C
Coolant flow rate 1250kg/s| 1260kg/s 1865kg/s
Vapor flow rate 1250kg/s | 1037kg/s 908kg/s
Total generation 1200MW | 1090MW 1028MW
Thermal efficiency 41.4% 38.5% 35.3%
Technical issues tritium In steam expansion
coolant generator volume

Other thermal Plants:

BWRs — 33%

PWRs — 34%

Supercritical Fire — 47%
Combined gas turbine - >60%




Findings

-Supercritical water cycles is desirable and possible
(technically difficult).

- No gas turbine system is effective in temperature ~500 C.

- With steam generator, gas cooled is less effective than water.

- Plant design limited above 650 C.

High temperature material does not guarantee economy.
Improvements may be required in the DEMO generation.

Possible Advanced Plant Options
-High temperature cycle can be planned with He gas turbine at
~900 C.
-Only dual coolant LiPb blanket has possibility for high
temperature in ITER/TBM.
-At high temperature, use of heat for hydrogen production

may be an attractive choice.



| —
(q0]
(b
=
=
-
D
©
=
-
O
(¢b)
fe)
(-
o
i
O

Fusion Contribution with hydrogen

e\ gAY
s
21COE iy

w
o

TR
o

0
1900 1950 2000 2050 2100

)
o [

actual i
estimated Renewable hydrogen

renewables

ydrogen
n electricity

Unconventional gas

i mientional oil

year



Hydrogen Production by Fusion
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Fusion can provide both high temperature heat and
electricity
- Applicable for most of hydrogen production processes

As Electricity
-water electrolysis, SPE electrolysis :renewables, LWR
-Vapor electrolysis : HTGR

As heat
-Steam reforming:HTGR(800C),
-membrane reactor:FBR(600C)
-I1S process :HTGR(950C)
-biomass decomposition: HTGR



Energy Eficiency
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Oamount of produced hydrogen from unit heat
- low temperature ( 3 0 0°C ) generation
— conventional electrolysis
* high temperature ( 9 0 0°C ) generation
— vapor electrolysis
high temperature ( 9 0 0°C ) -» thermochemical
praduction

From 3GW heat efficiency €lectricity | Energy Hydrogen
consumption  [Production
300C-electrolysis 33% [1GW 286kJ/ mol | 25t/h
900C-electrolysis 50% |1.5GW | 231kJ/ mol | 44t/n

900C-vapor electrolysis | 50% [1.5GW | 181kJ/ mol | 56t/h

000C-biomass — — 60kJ/ mol 340t/ h




OProcessing capacity: 3GWt

- 2500t / h waste=—> 340t of H2
1.3x10° fuel cell vehicles (6kg/day)

or 6.4 GWe (70% fc)
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Fusion safety and environmental impact
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Inventory distribution compared with ITER
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/80K supercritical water
Li ceramic pebbles
He/H2 sweep for tritium
recovery

High Temperature
High Pressure
Fine tubings
Tritium Production

1st wall

Cooling tubes

Tritium Permeation could be ~100g day



Largest detritiation system will be for coolant
Fusion safety depends on ACTIVE system.

Generalized fusion plant

GENERATION || . K\

SYSTEM ALK
@ PRIMARY
B PRIMARY LOOP

COOLANT
PROCESS-

 AING SECONDARY LOOPS
AIR DETRITIATION

tritium flow

tritium leak/perm



Generalized detritiation system

Detritiation for power train will depends on blanket types.
Normal detritiation for coolant will handle emergency spilll.
Safety control with active system is not site specific.

Tritium recovery

Low concentration Tritium recovery
Large throughput : .
Once through High concentration

Quick return



Detritiation systems of Plant

Processes large throughput, lower concentration <
Controls environmental release
Operational continuously (including maintenance)

- 1000 m3 / hour, possibly ci/m3 level

- leak from generator, secondary loops, hot cell
. (isotope separation)

- 100 m3/ day, possibly 1000 ci/m? level, 100g/day?
- driving turbine

- 1ton / day, possibly g/ piece?
- materials (lithium, berylium, Steel) recycle
- needed both for resource and waste aspects.



Tritium confinement

TRITIUM IS CONFINED WITHIN  Power train will be driven with

ENCLOSURES AND " . :
DETRITIATION SYSTEMS tritium containing medium.

High temperature blanket will
require improved permeation
control.

S hareiery | Pressurized gas may require
SYSTEM additional expansion volume.
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Emission from Fusion and Dosg
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Findings

-Fusion plant detritiation will be dominated by power

plant configuration.

- Normal tritium release will be controlled actively.

- Off-normal spill can be recovered with normal detritiation.

- High temperature plant will require improved tritium system.

-Measurable tritium will be released in airborne form.

-Tritium accumulates in environment (far smaller natural BG).
-Ingestion dose will be dominant.

-For long run, C-14 may be a concern.



Conclusion

Fusion development is in the phase to study market
- Fusion must find customers and meet their requests.
- Fusion must satisfy environmental and social issues.

Development of advanced blanket is a key issue for fusion

- Economy - not just temperature, but to maximize market

- Environment - not just low activation, but best total cost
and social value / least risk(Externality)

Development strategy (road map) for blanket is needed.

- ITER and DEMO require 2 or more generations of blankets.

- staged improvement of blanket is planned with water-PB,
and LiPb dual coolant concepts.



Conclusion 2

Possible blanket improvement
Independent from large increment of plasma
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