
Forschungszentrum Karlsruhe
in der Helmholtz-Gemeinschaft

Erice: International School of Fusion Reactor Technology July 30. 2004 Divertor Physics and Technology G. Janeschitz et.al. slide # 1

FUSION FZK - EURATOM ASSOCIATION

Divertor Physics and Technology

9th Course on Technology of Fusion Tokamak Reaktors

G. Janeschitz

Head of the Nuclear Fusion Program
in the Forschungszentrum Karlsruhe

Germany

Accnoledgements to: T. Ihli, A. Kukushkin, M. Merola, H.D. Pacher, R. Tivey, and the 
Efremov He Divertor Team 

Reference: Stangeby, P.C., "The Plasma Boundary of Magnetic Fusion Devices", IOP 
Publishing Limited, 2000



Forschungszentrum Karlsruhe
in der Helmholtz-Gemeinschaft

Erice: International School of Fusion Reactor Technology July 30. 2004 Divertor Physics and Technology G. Janeschitz et.al. slide # 2

FUSION FZK - EURATOM ASSOCIATION

Outline

Scrape Off Layer (SOL) and Divertor Physics

A water cooled Divertor

Integration of a Divertor into a Reactor class machine (ITER)

A He cooled Divertor

Summary
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SOL and Divertor Physics
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The Plasma of a modern Divertor Tokamak

Magnetic flux surfaces

Divertor

Separatrix

Transformer – Central Solenoid

Poloidal field coils

SOL Flux Line
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Experimental experience with divertors suggests a problem 
for a Reactor class machine

• Power decay length in the SOL is ~ 
0.5 cm in the midplane

• => 60% of power flows in a 5 mm 
thick shell towards the divertor

• Flux expansion in the Divertor ~ 3 to 5

• 60 % of power in ~ 2.5 cm thick 
layer

• Poloidal target inclination can bring 
another factor 2 to 3 widening

80 to 

130 MW

Into SOL

• Thus we have in the order of a 5 cm wide area on the 
target where 60% of the power, i.e. ~ 60 MW lands => 
peak power > 20 MWm-2

• We must find a better Physics solution !!
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κ0e ~ 2000;  κ0i ~ 60 

The Heat Transport along fieldlines is dominated by conduction
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Insensitivity of Tu on power and the dependence of a 
temperature gradient along fieldlines on power can beseen

Cooling by
recycling at the
plates can
increase the
temperature
gradient

High recycling
regime
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The SOL and Divertor Plasma in a simple 2 Point Model
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Target Temperature, Density and the High Recycling Regime
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Energy Conservation along Field lines
limits the Radiation Losses !!

PSOL - PImp - PRec =   PSheath

PRec = Γt ξ   where ξ is the ionization energy (13.6 eV)

Irradiation by impurities is 
limited at a given density

or the upstream density is limited    => Edge density limit !!!
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Energy Losses can be increased by breaking the 
pressure balance, i.e. by momentum losses

plasma radiation and conduction
drops Te to 5 eV at transition

total plasma
pressure

field line distanceTarget

H0 H0
H0

H0H0 M<<1

Tc = 5 eV
Γc

M=1

, n c

neutrals and tenuous
plasma

ΓD
T D

n D

q c//
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Detachment with targets 
perpendicular to the flux lines occurs 
across the SOL and forms Marfe in 

the X-point
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Vertical Target makes 
partial detachment 

possible

Attached 
0.01% Ne 

Partially attached 
0.7% Ne 

  
 

2-D calculations are 
essential to understand the 
behaviour

Shallow detached (PSI) 
1% Ne, transient 

Deeply detached 
1% Ne, weak pumping 

  
 

Partial detachment increasing 
with impurity radiation

Vertical Target pushes neutrals 
towards the hot Separatrix

Multiple Charge exchange 
transports momentum from the 

hot area to the outer SOL
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The 2D B2-EIRENE Model

Model used

B2-Eirene code package, version solps4.0

D, He, C ions and atoms, D2 molecules

Toroidal geometry

Flux-limited parallel transport

No drifts, no currents

Sheath boundary condition on targets

Constant radial diffusivities in real space

D⊥ = 0.3 m2 s–1,  χ⊥ = 1 m2 s–1, No pinch

Decay length of 3 cm for all plasma T & n at the 
grid edges

Core-edge interface: power and D fluxes, zero C 
fluxes, no He+, He++ density adjusted to fusion 
power and pumping speed

100% recycling of D and He everywhere

Albedo at the pumping duct (bottom PFR)

Liners: 56% transparency for toroidal
discontinuity 
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Surface properties - realistic surfaces (RS)

Realistic surface (RS) model:

Carbon at targets

Deposited C can be re-eroded

=>Two surface states, depending 
on erosion-deposition balance

Erosion-dominated

⇒ metal, no C absorption

Deposition-dominated

⇒ C, no C source

⇒Determined iteratively

calculate total C erosion rate at 
all the surface locations and 
compare it with carbon 
deposition there

• specify surface properties 
accordingly

• iterate until convergence

Sputtering model

Physical sputtering by atoms on the walls
Physical sputtering by all ions, also on the grid edges
Chemical erosion by D atoms and ions  => C atoms, 1 eV
Constant Ych = 0.01 as the basic assumption
Vary Y of redeposited carbon on walls

B2-Eirene setup: 
fluxes calculated on different 
surfaces

Ions on grid edges

Neutrals on walls

⇒ combine where possible

⇒ only neutrals under dome

Targets: regular C

⇒ the only C source
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Effect of carbon re-erosion
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Erosion-deposition profile

RS case: 100 MW, gas puff

⇒Net carbon deposition in 
the main chamber –
disagreement with JET data?

W

Be
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⇒Increase of Y for 
redeposited material 
reduces deposition 
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Results from B2-EIRENE for ITER
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What do we know about divertor configurations ?

• We have learned that Vertical Targets (VT) pushing neutrals towards the 
private region are optimum

• A so called Domed Target, i.e. a vertical target pointing outward has the 
opposite effect and would starve the hot region from neutrals

• The consequence would be very high power loads and low neutral 
density for pumping

• A target perpendicular to the flux lines pushes neutrals towards the X-point 
and thus causes uncontrolled full detachment and thus X-point marfes which 
destroys plasma performance

• This is also true if the VT is to shallow and reflects neutrals towards the 
X-point

• Due to a longer decay length for particles when compared to power the 
divertor has to be deep i.e. majority of particles pushed below X-point
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Simple Rules to Design an optimised Divertor

1.) Poloidal Angle such (~ 15 to 25 degrees) that total angle is > 1 degree

2.) Normal to the target where 3 cm flux line intersects points below the X-point
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What else do we need on the upper emd of the Divertor Targets ?

• Neutrals have to remain to a large 
extend in the divertor region

• Due to the fact that the plasma is a 
very effective pump there is ~ 50% 
probability for neutrals to get ionised
and 50% to do CX

• CX neutrals leave the plasma 
again and thus could escape into 
the main chamber if baffle is too 
short

• Therefore a baffle following the 5 cm 
flux line for ~ 0.5 to 1 m poloidal length 
is required to reduce the neutral flux 
by ~ 2 orders of magnitude
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What structure do we need in the private region ?

• Due to the high neutral density in the 
private region an X-point marfe
becomes again more likely and thus 
reduces the operation window in 
terms of density

• We need therefore a baffle which 
shields the X-point from neutrals

• We also need a large conduction 
between inner and outer strike 
zone

• As a consequence a so called Dome 
Structure is introduced

• The additional benefit of the 
Dome is better neutron shielding 
of VV and coils
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Optimised Divertor for ITER
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A Water cooled Divertor
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Inner VT
Outer VT

Cassette body

Dome

Liner
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Tungsten

CFC

CuCrZr

CuCrZr
CuCrZr

(See talk of A. Peacock)
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Thermal-hydraulics
MonoblockMonoblock

SaddleblockSaddleblock

HypervapotronHypervapotron

Annular Annular 
flowflow

Flat tile Flat tile 
monoblockmonoblock

33 33

44

Swirl flowSwirl flow
10 bore, twist ratio,Y=210 bore, twist ratio,Y=2

Smooth tubeSmooth tube

HypervapotronHypervapotron fin  4 fin  4 
high x 3 wide, groovehigh x 3 wide, groove 3 3 

Annular flowAnnular flow,,
16 OD 11 ID16 OD 11 ID

Porous coatingPorous coating

Screw tubeScrew tube
M10 x 1.5 pitchM10 x 1.5 pitch

ICHFICHF
UniformUniform
MWmMWm--22

ICHFICHF

PeakedPeaked*

MWmMWm--22

PressurePressure
Drop Drop 

MPaMPa mm--11

Best suited to flat tile geometryBest suited to flat tile geometry

1717 0.20.2

15 OD 11 ID,Y=315 OD 11 ID,Y=3

2727

2727

3535

3535

> 30> 30

3434

4343

0.60.6

1.01.0

0.550.55

__

As above but CFC As above but CFC †† 2222 3030

__

Values extrapolated to ITER coolant conditions Values extrapolated to ITER coolant conditions tsubtsub 120120°°CC
††Results from all Cu mockResults from all Cu mock--ups except CFC armoured swirl case.ups except CFC armoured swirl case.

Ref. Except where stated Raffray et al; Ref. Except where stated Raffray et al; FusFus Eng.&Des 45 (1999) 377Eng.&Des 45 (1999) 377--407407

4343

φφ φφ

Screw tubeScrew tube

Ref. Ref. EzatoEzato et al;Oct 2002 et al;Oct 2002 
Values extrapolated to Values extrapolated to 

ITER coolant parametersITER coolant parameters

Ref. Ref. GrigorievGrigoriev et al;March 2000et al;March 2000

*Peaked heat profile in the tests was P(x)=Po e -x/λ, where the peak 
heat flux Po and λ is ~50mm

0.50.5

Y = number of tube internal Y = number of tube internal 
diameters per 180diameters per 180°° twist.twist.
Similar results obtained for Similar results obtained for 
12mm bore tube12mm bore tube
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Annular Flow and Hpervapotrons

HypervapotronHypervapotron

Annular flowAnnular flow

33 33

44
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Heat-sink Alloy Selection

• The precipitation hardened alloy 
CuCrZr is preferred to dispersion 
strengthened Cu, because it has 
much higher fracture toughness.

• CuCrZr can be sourced from 
several suppliers

• CuCrZr can be welded.

• For CuCrZr the manufacturing 
process has to be carefully 
controlled to ensure high 
thermal conductivity and good 
mechanical properties are 
achieved..

Comparison of Comparison of CuCrZrCuCrZr & DS Cu Fracture Toughness& DS Cu Fracture Toughness
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Manufacturing cycle compatibility with CuCrZr heat-sink

• RF: W-Cu to CuCrZr joining at stage 4, by fast brazing T>5000C, τ<5 min  → 90% of 
optimum CuCrZr properties.

• EU: W-Cu, CFC-Cu to CuCrZr joining at 3 (HIP, 5000C) → 100% of optimal CuCrZr
properties.

• US: joining at 1 ( (HIP, 9800C), followed by quench + ageing → 90% of optimal CuCrZr
properties.

• JA Hot pressing of W rods at 1 (900°C 5MPa) followed by quench + ageing 

Solution 
Annealing

Quench
Cold Working Ageing

Solid Solution

Non-coherent Precipitation

Coherent Precipitation

1000

500

20

Time

1

2

3

4

ExamplesExamples
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CFC Armour
• ITER has ~1.0x105 carbon-fibre composite tiles.

– Required to operate @ 10MWm-2 for 1000 
cycles of 400s, sustain 100 transients of 10s 
duration  & heat flux 20MWm-2.

– A twisted (swirl) tape inserted in the tube 
promotes turbulence & provides margin to the 
critical heat flux of ~1.5.

– In testing CFC monoblock armoured high heat 
flux components for ITER have survived >1000 
cycles of 20MWm-2.

• CFC to CuCrZr joining using AMC® process :
– Laser conditioning of CFC;
– Ti coating is applied to the surface to aid 

wetting;
– Vacuum casting of pure Cu layer onto Ti/CFC;
– Machining of bore to correct size;
– Monoblocks are HIPed or brazed to CuCrZr

tube.

Cast OFHC CuCast OFHC Cu

CFCCFC

Detail of AMC Detail of AMC ® JointJoint

CrossCross--section CFC section CFC monoblockmonoblock
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Tungsten Armour

Tungsten tiles brazed on CuCrZr heat sink
Machine (diamond grind) cubes 12 x 12 x 12 mm;
Stack cubes to form tile and cast pure Cu layer;
Chemically etch residual Cu from gaps between 
cubes.;
Final machine tiles to size.
Survived cycling at 27MWm-2

Tungsten lamellae 
Cast pure Cu layer, HIP’ed to coolant 

tube.
Survived cycling to 20MWm-2

ITER has ~100m2 W armour, say 2.5x105 tungsten tiles (20mmL x 20mmW x 
10mmH) 
Required to operate up to 1-2 MWm-2. Several options are available:

Hot pressed tungsten pinsHot pressed tungsten pins (900(900°°C & 5MPa). C & 5MPa). 
Survived 100 cycles at 15MWmSurvived 100 cycles at 15MWm--22 & 3000 cycles at & 3000 cycles at 

10MWm10MWm--22
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CFC Monoblocks and        W brush / Lamella Mock Ups

Macrobrush Lamellar Rod

Qabs = 43MW/m2, 10-15s, 2 cycles
Qabs = 27MW/m2, 10s, 1500 cycles
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Type of strain cycle design
number

of
cycles,

n

strain
range,

∆εtot, %

allowable
number of

cycles,
Nallow

Fatigue
usage

fraction

First 9 cycles
 0 => 10 MWm-2 => 0

9 0.204 90054 1.0×10-4

First cycle
 0 => 20 MWm-2 => 10 MWm-2 =>0

1 1.219 41 0.024
Subsequent cycles

 0 => 20 MWm-2 => 10 MWm-2 =>0
299 0.230 54320 0.002

Subsequent cycles
 0 => 10 MWm-2 => 0

2691 0.112 1.180×106 0.006

Cumulative fatigue usage fraction,V 0.032

Fatigue damage estimation for reference design CFC on CuCrZr tube

The armour and Cu heat sink performance uses a design by experiment approach.
The design of the CuCrZr tube (10 ID, 12 OD) is supported by fatigue and fracture mechanics 
analyses..

Note usage factor based on 3000 cycles & includes a safety factor of x 20. 
Values are for CuCrZr properties obtained using either HIP-ing (EU) or a fast brazing cycle (RF).
•Apply low Temperature HIP (480°C, few hours) during the ageing treatment of the CuCrZr
“Fast brazing” => use CuCrZr in quenched and annealed condition, but heat during joining up to ~ 800°C for short time 
(total time at T > 600°C ~ 5 min).  Some over ageing occurs, however the mechanical properties are in the acceptable 
level (~90% of optimum).
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CFC/Cu W/Cu

Compiled Compiled -- V V BarabashBarabash
Updated October 2002 Updated October 2002 -- R. TiveyR. Tivey

Note that the best results have been obtained using pure Cu as a compliant layer between armour and heat sink to 
accommodate differences in coefficient of thermal expansion for both between  CFC and W armoured components. 
OFHC Cu has very high thermal creep rate & this is very useful for the stress relaxation. 

High Heat Flux Test Summary
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Vertical Target
Medium Scale Prototype

• W macrobrush:
15 MW/m2 x 1000 cycles

• CFC monoblock
20 MW/m2 x 2000 cycles

• CHF test > 30 MW/m2

50
0 

m
m

1998
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Vertical Target
Full-Scale Prototype

W monoblocks

CFC monoblocks

2002

• Test in progress in FE200 
facility at Le Creusot (F)
(see talk F. Escourbiac)

• W monoblocks:
10 MW/m2 x 700 cycles

• CFC monoblock
10 MW/m2 x 1000 cycles
20 MW/m2 x 1000 cycles
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Neutron-Irradiation Experiments PARIDE 1 - 4
PARIDE 1:
· temperature: 350°C 
· target fluence:  0.5 dpa 

PARIDE 2:
· temperature: 700°C 
· target fluence:  0.5 dpa

PARIDE 3:
· temperature: 200°C 
· target fluence:  0.2 dpa 

PARIDE 4:
· temperature: 200°C 
· target fluence:  1 dpa

(See talk of J. Linke)
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unrirradiated
- 1000 cycles x 10-14 MW/m2– no failure
- 1000 cycles x 18 MW/m2 – no failure, several mock-ups with different technologies
- 1000 cycles x 20 MW/m2 – no failure

200°C, 0.1 dpa (in W)
- 1000 cycles x 10 MW/m2– no failure
- 1000 cycles x 14 MW/m2 – no failure
- 1000 cycles x 18 MW/m2 – no failure

200°C, 0.5 dpa (in W)
- 1000 cycles x 10 MW/m2– no failure
- 1000 cycles x 14 MW/m2 – no failure
- 1000 cycles x 18 MW/m2 – no failure

The irradiated pure Cu interlayer leads to a 
reduction of the high heat flux 
performances in a flat tile geometry below 
the ITER requirements for the strike point 
region.

The monoblock solution appears therefore 
mandatory for this region.
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Integration of a Divertor

into a Reactor Class Machine
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Coolant route
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Optimisation of the water flow
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Numbering of the attachments
and maximum load

No. 1
143 kNNo. 2

155 kN

No. 3
125 kN

No. 4
189 kN

No. 5
140 kN

No. 6
137 kN
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PFCs multilink Attachment

Mandrill to
extrude pin
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Remote Maintenance of the Divertor - cassette toroidal and radial mover
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Divertor Remote Handling Test Platform
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Step 1:
The CB is located in the toroidal position
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Step 3:
The CB is preloaded
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A He cooled Divertor
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Target plates made of W-Armor Segments

Target Plate

HE-COOLING TECHNIQUE ?

High Heat Load + Erosive Particle Flux
Castellated Armor Layer

W-Armor:
+ High Melting Point
+ High Heat Conductivity
+ low Sputtering Rate
- need of low Impurity of W in Plasma

(due to high atomic number of W)

up to 4000
W-ARMOR
Segments

(for acceptable 
Thermal Stress in 

W-Armors &
Cooling System)
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Helium Cooling Systems

MULTI-JET 1-JET
high dp

1-JET
low dp

SLOT SLOT
Opt. Fab.
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Design: Cooling Fingers for DEMO Divertor

Multiple-jet-cooling-system

Armor (W) Cap (WLa10)

Jet Cartridge
(Steel)

Armor (W)

Cap (WLa10)W-Parts

- Prevention of crack failures
- Prevention of bulge 

during operation
- Prevention of failures due to 

local stress peaks
- High Cooling Surface 

(Hex. Armor, Domed Caps)

Jet Cooling
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Layout example for Multiple-He-Jet-Cooled Divertor

D = 15 mm

a = 18 mm

24 holes; 
D = 0.6 mm

center hole; 
D = 1 mm

Multiple Jet Cartridge Finger Unit

Jet Cooling
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HEMJ 0.6-2 HEMJ 0.6-2 J1-b HEMJ 0.6-2 J1-c HEMJ 0.6-2 J1-d

HEMJ cartridges for simulation experiments

HEMJ 0.6-2 J1-e Tube for mockup
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CFD-Results for layout example, (Efremov)

Flow Velocities Temperatures in Cap

Helium, 10 MPa, T_in 630 °C, heat load: 10 MW/m²:

• max. Temperature in W-Cap: 1176°C (< 1300°C)

• Pressure drop: 0.15 MPa

• Mass flow per finger: 6.8 g/s

B.C.:
Results:

Jet Cooling
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Optimization of slot concept (HEMS-C): 
Domed slot array

Domed slot array

finger unit with
domed slot array

Flow Promoter
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H=1.2 mm
H=1.7 mm

EDM manufacturing of CuCrZr mockups

• Roughness Ra~0.4 mkm
• EDM duration ~ 40 hours
• Slot width 0.2 mm



Forschungszentrum Karlsruhe
in der Helmholtz-Gemeinschaft

Erice: International School of Fusion Reactor Technology July 30. 2004 Divertor Physics and Technology G. Janeschitz et.al. slide # 58

FUSION FZK - EURATOM ASSOCIATION

New Design
W-Cap – Steel Joint

W-Cap – Steel-Tube Joint

WL10-Cap

WL10-Pin

Steel-
Tube

Cap/Tube with Spacers for Cartridge

Spacer
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Cross-section of lock-area
W

Steel

Cu-layer

W

Current results (pins option)Current results (pins option)
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Flow Volume

Advanced 9-Finger module

Plate design (welding / diffusion welding / HIP)

DESIGN

Module
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9-Finger Unit

Test, Assembling

Construction Kit Principle: Small Units advantageous for R&D progress
Small Units can be tested before assembling

High reliability, low waste during fabrication

Stripe-Unit

Test, Assembling

Target Plate

Test, Assembling

Divertor Cassette

…

DESIGN
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Assembling of 9-Finger-Modules (series connection)

„left“ Modules
„right“ Modules

DESIGN
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Materials, Design, Joining

Finger Units
9-Finger-Units

Small Parts Development

Outlook: He-cooled Divertor on the way to ITER & DEMO

Stripe-Units

Targets

Cassette,
TDM

Big Parts Development

ITER
2020

DEMO

Reactors
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Summary

Power Balance and Momentum Balance together with the need to avoid 
X-point Marfes limits the radiation losses in the SOL and the Divertor

A few simple rules allow to design an Optimized Divertor

Solutions with CuCrZr as heat sink and CFC or W as plasma facing 
material exist for a water cooled divertor up to 20 MWm-2

The integration of the divertor into a real machine produces additional 
boundary conditions

A He cooled Divertor with up to 15 MWm-2 seems feasible
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Scheme of Efremov GPF2Experiments

Pressure Vessels

Heat Exchanger Water

Mock up

Helium

Heat 
Exchanger

Pressure
Tank Compressor


