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1.  INTRODUCTION
For efficient extraction of Inertial Fusion Energy (IFE) it 

is essential to reduce the growth rate of surface instabilities 
in laser accelerated ablative surface of IFE target.  The 
following three different types of surface instabilities are 
observed :

Rayleigh – Taylor Instability (RTI)

Kelvin – Helmholtz Instability (KHI)

Richtmyer – Meshkov Instability (RMI)

At present the following mechanisms are used to reduce the 
RTI growth rate.



Gradual variation of density assuming plasma as 
incompressible heterogeneous fluid without surface tension.

Assuming plasma as compressible fluid without surface 
tension.

IFE target shell with foam layer.

Numerous numerical and experimental data for RTI growth 
rate at the ablation surface for compressible fluid fits.
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for a target lined with porous layer comprising nanotube, 
considering viscous incompressible fluid. Here γδ 2h=Β

is the Bond number, γ is the surface tension, ( ) ,fpg ρρδ −=
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density of porous lining and fluid respectively. Density in 
the range 5<       <103 kg/cm3,

are the

pρ ( ) 25102.7- 1.1  ink −×=

foam metal and 

for
( ) 261048201 in..k −×−≈ for aloxite metal and

ε = (0.016 – 0.027) 



Choosing suitable values for the constants A, ε and β one 
can fit the available data.  

Authors A ε β nm

Takabe et al (1985) 0.90 0.0 3.00 0.45 nbn

Lindl et al (1995) 1.00 1.0 3.00

Betti et al (1995) 0.98 1.0 1.70

Kilkenny et al (1994) 0.90 1.0 3.00

Knauer et al (2000) 0.90 1.0 3.02

Rudraiah (2003)
1.00 1.0

0.75

2.86

0.79 nbm (α =0.1, σ = 4)

0.26 nbm (α =4, σ = 20)



2.  MATHEMATICAL FORMULATION.

Fig 1. Physical Configuration



The conservation of momentum:
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The conservation of mass for compressible Boussinesq fluid 
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3.  DISPERSION RELATION WITH LASER RADIATION
In this section we derive the dispersion relation as well 

as the temperature distribution incorporating the laser 
radiation effect. 

Boundary Conditions
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3.1 Dispersion relation
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where n is the growth rate,      is the wave number, l
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a constant,  va is the velocity of flow across the ablative front 
given by
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when M → 0, Eq. (3.3) reduces to Rudraiah (2003)
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In the absence of nanostructure porous lining, (k i.e., σ →0) 
the growth rate (3.3) tends to
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3.2  Temperature distribution
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where κf and κp are the thermal diffusivity for shell – film 
and porous – silicon lining. The selection of a particular 
sign in Eq. (3.14) will depend on the physical situation. If 
we choose positive sign, then θp will be negative implying 
energy will be lost.  The problem considered in this paper 
requires the addition of energy to fuse BT.  For this we 
have to choose negative sign in Eq. (3.14) to ensure 
positive θp. In this paper, we consider the following two 
cases
Case 1: The fluid in the shell – film and porous – silicon 
layer is homogeneous and incompressible with 
temperature, Tp, in the porous – silicon is assumed to be 
constant which may be higher than fluid temperature.

Case 2: The fluid in the shell – film as well as in porous –
silicon is assumed to satisfy Boussinesq approximation 
with varying temperature Tp and Tf.



Case 1:  Homogeneous fluid
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Eqn. (3.15) is solved using the following two set of boundary 
conditions.

Set 1:  θ = 1 at    y = 0, and θ = θ1 at    y = 1 (3.16)

Set 2: θ = 1 at    y = 0, and ( )1−−= biBdy
d θθ (3.17)at    y = 1
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coefficient from the porous – silicon layer into shell-film, θb
is the temperature at y = 1.
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Similarly the solution of Eqn. (3.15), satisfying the 
boundary conditions (3.17), is 
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Case 2: Boussinesq fluid

For the shell – film 
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For the porous – silicon layer
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The solution of Eq. (3.21) and Eq. (3.22) satisfying the 
above boundary conditions are
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4.  CONCLUSIONS
The linear RTI in an IFE target modeled as a thin 
electrically conducting fluid film in the presence of 
transverse magnetic field lined with an incompressible 
electrically conducting fluid saturated nanostructured 
porous lining with uniform densities is investigated using 
normal mode analysis.  The main objective of this study is 
to show that the two mechanisms, having a suitable 
strength of magnetic filed and suitable porous material 
made up of nanostructure lining, reduce the growth rate of 
ablative surface of IFE target considerably compared to 
that in the absence of these two mechanisms. The 
dispersion relations given by Eqs. (3.3)  to (3.7) are 
analogous to the one given by Takabe et al., (1985) for 
compressible non-viscous nonelectrically conducting fluid 



as shown in Eqn. (1.2).  The dispersion relation (3.7) 
coincides with the one given by Rudraiah (2003) in the 
absence of Magnetic field.  The dispersion relation given 
by Eqn. (3.6) coincides with the one given by Babchin et 
al., (1983) in the absence of magnetic field (M→0) and the 
nanostructure porous lining (σ → 0). 

Setting n=0 in Eqn. (3.3), we obtain the cutoff wave 
number,   ct , above which MRTI mode is stabilized and 
which is found to be 
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For homogeneous fluid δ =1 and for Boussinesq fluid 
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The results given by Eqs. (4.1) and (4.2) are also true even 
for the cases in the absence of both nanostructure porous 
lining and magnetic field.  The corresponding maximum 
growth rates, denoted by suffix m, from Eqs. (3.3) to (3.10) 
are 
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It will be  of  interest  to compare  these  results  with  those  
given  in  Eqn. (1.2) by Takabe et al., (1985) for 
compressible fluid. In their case
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The corresponding nm is
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and the quantities with suffix Ta correspond to those given 
by  Takabe et al., (1985).

Using Eqn. (4.15) Takabe et.al. (1985) have shown that 
the maximum growth rate was reduced to 45% of their 
classical result given by Eqn. (4.16). 



From Eqn. (4.8), Rudraiah, (2003) has shown that in the 
absence of magnetic field and in the presence of porous 
lining, the reduction of maximum growth rate depends on the 
characteristics α and σ of porous lining.  For the types of 
porous material, namely, foametal, α takes the value 0.1 and 
σ ranges from 4 to 20 and for aloxite materials  α = 4 and σ
ranges from 4 to 20 (see the experiments of Beavers and 
Joseph (1967). Then for α =0.1 and σ =4 Rudraiah (2003) has 
shown that the maximum growth rate given by Eqn. (4.8) has 
been reduced to 78.57% of the classical value given by Eqn. 
(4.6). In the presence of magnetic field and absence of 
porous lining it is clear that the maximum growth rate given by 
Eqn. (4.9) depends on the Hartman number M. We note that 
the ratio depends purely on nanostructured porous lining 
when M=0, the ratio   given by Eqn. (4.8) will depend only on 
the values of M in the absence of porous lining where as 
other ratios depend on M, α and σ. 



Fig 2: The Growth Rate n versus wave number for   

M =1 and for different Bond numbers B



The relation (3.3) is plotted in Fig.2 which is for the growth 
rate n versus the wave number for M=1,              ,  and 
σ = 4 for different values of  B. From this fig.2 we conclude 
that the perturbation of the interface having a wave 
number smaller than

l 10.=α

ctl are amplified when 
).,.(0 pfei ρρδ <> and the growth rate decreases with a

decrease in B implying increase in surface tension. That is, 
increase in surface tension makes the interface more 
stable even in the case of electrically conducting fluid. 
Similar behavior is observed for M>1 for fixed values of  α
and σ and found that increase in σ is more significant 
than an increase in M in reducing the growth rate. 



Fig 3. Ablative surface Temperature        for different bθ
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bθ

M=0 M=1 M=10 M=20
0 382.264 410.918 496.739 498.861
4 403.504 423.383 496.756 498.865
8 416.156 431.443 496.772 498.868

12 424.549 437.081 496.786 498.871
16 430.523 441.247 496.799 498.874
20 434.991 444.45 496.812 498.876

Table 4: The values of 
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Fig 4. Ablative surface Temperature         for different M.bθ



M
0 382.3 403.5 434.99
1 410.9 423.4 444.5
5 486.9 487.1 487.5
10 496.7 496.8 496.8
15 498.86 498.86 498.88
20 499.64 499.64 499.65

Table 5: The values of bθ

The ablative temperature     given by equation (3.20) is computed 
for different values of M and σ.  The results of    vs M for 
different values of σ are plotted in fig. 3 and    vs σ for different 
values of M are drawn in fig. 4.   From these figures, we conclude 
that for small values of  M and σ,   increases slowly and 
saturates for larger values of  M and σ
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I. KHI at the ablative surface lined with nano 
structured porous layer in a fully developed two-
phase composite layer using BJR condition.

In the third year of the project, in contribution 4, we have 
considered KHI in a sparsely packed porous lining, where the 
Brinkman equation is valid and the interface between the film and the 
porous lining is assumed to be a regular surface and using Residual 
shear condition.    In these problems the thickness of the porous layer 
was absent.   In many practical applications including IFE, it is 
important to find the effect of the thickness of porous lining. This can 
be done using Rudraiah (1985) boundary condition.   As the thickness 
becomes very large Rudraiah condition tends to Beavers-Joseph (BJ -
1967) condition.   Hence in the literature Rudraiah condition is denoted 
by BJR condition.   In the first quarter of the fourth year of the project, 
we propose to investiage RTI in a finite thickness of porous layer using 
BJR condition with the objective of  predicting the effect of the 
thickness of porous lining on the reduction of growth rate of KHI.   This 
effect is important in the design of effective IFE target.



II.  Kelvin-Helmholtz Instability at the ablative surface 
using external constraints of magnetic field and 
porous lining.

In the remaining quarters of the fourth year of the project, we 
propose to investigate the effect of magnetic field on the 
reduction of growth rate using the following cases: 

Case 1:  Effects of densely packed porous lining in the presence of  a 
magnetic field on  KHI growth rate  using BJ condition.

Case 2:  Effects of sparsely packed porous layer in the presence of 
magnetic field on the KHI growth rate using residual shear   
condition.

Case 3:  Effects of sparsely packed finite thickness porous lining in 
the presence of a magnetic field on the KHI growth rate    
using BJR condition.   This condition predicts the effect of   
thickness of porous lining.



Case 4:  Effects of magnetic field and roughness of the ablative
surface on the reduction of KHI growth rate.   The results   
obtained in this case will be useful to take care of the             
roughness of the IFE design.

The problem 2 posed above involves four cases and each case 
take considerable time because we have to solve plasma 
equations in thin film and porous lining using normal mode 
analysis, Kinematics condition in the presence of surface 
tension and dynamic condition.

In first quarter of fourth year we proposed to investigate the 
problem 1 posed above and in the remaining three quarters we 
propose to investigate cases 1 and 4 posed in problem 2 above.

If time permits, we initiate the third type of instability, namely 
Richtmyer and Meskov instability proposed in our section on 
“Objectives”. This instability is also important in the design of IFE 
target.   Here also, we propose to study the effects of nano structure 
porous lining and the external magnetic field using cases 1 to 4
proposed in problem 2 above. 



Table 2(a):Values of Gmi for different values of M and σ =4, α =0.1

M Gmo Gm1 Gm2 Gm3 Gm4 Gm5

0.5 0.7296 0.7857 0.9092 0.9286 0.8025 0.9286
1.0 0.6013 0.7857 0.7152 0.7653 0.8407 0.7653
1.5 0.4657 0.7857 0.5288 0.5926 0.8806 0.5926
2.0 0.3546 0.7857 0.3885 0.4513 0.9128 0.4513
2.5 0.272 0.7857 0.2906 0.3462 0.9360 0.3462
3.0 0.2122 0.7857 0.2228 0.2700 0.9524 0.2700
3.5 0.1687 0.7857 0.1751 0.2143 0.9638 0.2147
4.0 0.1367 0.7857 0.1407 0.1740 0.9719 0.1740
4.5 0.1127 0.7857 0.1152 0.1434 0.9777 0.1434
5.0 0.0943 0.7857 0.0960 0.1120 0.9820 0.1198
5.5 0.0799 0.7857 0.0811 0.1017 0.9852 0.1017
6.0 0.0686 0.7857 0.0694 0.0873 0.9876 0.0873



Table 2(b): Values of Gmi for different values of M and σ =10, α =0.1

M Gmo Gm1 Gm2 Gm3 Gm4 Gm5

0.5 0.5896 0.6250 0.9092 0.9434 0.6485 0.9434
1.0 0.5043 0.6250 0.7100 0.8000 0.7000 0.8068
1.5 0.4066 0.6250 0.5288 0.6506 0.7689 0.6506
2.0 0.3203 0.6250 0.3900 0.5100 0.8200 0.5125
2.5 0.2520 0.6250 0.2906 0.4032 0.8673 0.4032
3.0 0.2002 0.6250 0.2200 0.3200 0.8900 0.3203
3.5 0.1613 0.6250 0.1751 0.2581 0.9215 0.2581
4.0 0.1320 0.6250 0.1400 0.2100 0.9300 0.2111
4.5 0.1095 0.6250 0.1152 0.1752 0.9503 0.1752
5.0 0.0920 0.6250 0.0960 0.1470 0.9600 0.1474
5.5 0.0784 0.6250 0.0811 0.1255 0.9664 0.1255
6.0 0.0670 0.6250 0.0690 0.1070 0.9710 0.1080



Table 2(c): Values of Gmi for different values of M and σ =20, α =0.1

M Gmo Gm1 Gm2 Gm3 Gm4 Gm5

0.5 0.4775 0.5000 0.9090 0.9550 0.5250 0.9549

1.0 0.4210 0.5000 0.7150 0.8410 0.5880 0.8413

1.5 0.3510 0.5000 0.5290 0.7030 0.6640 0.7025

2.0 0.2860 0.5000 0.3880 0.5710 0.7350 0.5711

2.5 0.2300 0.5000 0.2910 0.4610 0.7930 0.4609

3.0 0.1870 0.5000 0.2230 0.3730 0.8380 0.3733

3.5 0.1530 0.5000 0.1750 0.3050 0.8720 0.3051

4.0 0.1260 0.5000 0.1410 0.2520 0.8970 0.2523

4.5 0.1060 0.5000 0.1150 0.2110 0.9160 0.2111

5.0 0.0890 0.5000 0.0960 0.1790 0.9300 0.1787

5.5 0.0760 0.5000 0.0810 0.1530 0.9420 0.1528

6.0 0.0660 0.5000 0.0690 0.1320 0.9500 0.1320



Table 3(a): Values of Gmi for different values of M and σ =4, α =4

M Gmo Gm1 Gm2 Gm3 Gm4 Gm5

0.5 0.2860 0.2941 0.9092 0.9726 0.3146 0.9725
1.0 0.2643 0.2941 0.7152 0.8986 0.3695 0.8986
1.5 0.2346 0.2941 0.5288 0.7978 0.4438 0.7978
2.0 0.2029 0.2941 0.3885 0.6898 0.5222 0.6898
2.5 0.1729 0.2941 0.2906 0.5878 0.5950 0.5878
3.0 0.1466 0.2941 0.2228 0.4983 0.6579 0.4983
3.5 0.1243 0.2941 0.1751 0.4226 0.7100 0.4226
4.0 0.1058 0.2941 0.1407 0.3598 0.7524 0.3598
4.5 0.0907 0.2941 0.1152 0.3083 0.7868 0.3082
5.0 0.0782 0.2941 0.0960 0.2659 0.8146 0.2659
5.5 0.0679 0.2941 0.0811 0.2310 0.8373 0.2310
6.0 0.0594 0.2941 0.0694 0.2021 0.8560 0.2021



Table 3(b): Values of Gmi for different values of M and σ =10, α =4

M Gmo Gm1 Gm2 Gm3 Gm4 Gm5

0.5 0.2614 0.2683 0.9092 0.9744 0.2875 0.9744
1.0 0.2428 0.2683 0.7152 0.9050 0.3395 0.9050
1.5 0.2171 0.2683 0.5288 0.8092 0.4106 0.8092
2.0 0.1891 0.2683 0.3885 0.7050 0.4869 0.7050
2.5 0.1624 0.2683 0.2906 0.6052 0.5588 0.6052
3.0 0.1385 0.2683 0.2228 0.5164 0.6219 0.5164
3.5 0.1182 0.2683 0.1751 0.4404 0.6749 0.4404
4.0 0.1011 0.2683 0.1407 0.3768 0.7187 0.3767
4.5 0.0869 0.2683 0.1152 0.3240 0.7444 0.3240
5.0 0.0752 0.2683 0.0960 0.2804 0.7837 0.2804
5.5 0.0656 0.2683 0.0811 0.2443 0.8078 0.2443
6.0 0.0575 0.2683 0.0694 0.2143 0.8278 0.2143



Table 3(c): Values of Gmi for different values of M and σ =20, α =4

M Gmo Gm1 Gm2 Gm3 Gm4 Gm5

0.5 0.2528 0.2593 0.9092 0.9750 0.2780 0.9750
1.0 0.2352 0.2593 0.7152 0.9071 0.3288 0.9071
1.5 0.2108 0.2593 0.5288 0.8130 0.3986 0.8130
2.0 0.1841 0.2593 0.3885 0.7101 0.4739 0.7101
2.5 0.1584 0.2593 0.2906 0.6111 0.5453 0.6111
3.0 0.1355 0.2593 0.2228 0.5226 0.6082 0.5223
3.5 0.1158 0.2593 0.1751 0.4465 0.6613 0.4465
4.0 0.0992 0.2593 0.1407 0.3862 0.7052 0.3826
4.5 0.0854 0.2593 0.1152 0.3295 0.7413 0.3295
5.0 0.0740 0.2593 0.0960 0.2855 0.7710 0.2855
5.5 0.0646 0.2593 0.0811 0.2490 0.7955 0.2490
6.0 0.0567 0.2593 0.0694 0.2185 0.8158 0.2185




