
 1 

EFFECTS OF LASER RADIATION AND NANO – POROUS LINING 
ON THE RAYLEIGH – TAYLOR INSTABILITY IN AN ABLATIVELY 

LASER ACCELERATED PLASMA. 
 

By 
 

N. Rudraiah 
  

National Research Institute for Applied Mathematics (NRIAM), 
492/G, 7th Cross,  7th Block (west),  Jayanagar,  

Bangalore – 560 082. 
  

And 
 

UGC-CAS in Fluid Mechanics, Department of Mathematics 
Bangalore University, Bangalore-560 001. 

 
ABSTRACT: 
 

 This paper presents the effects of magnetic field, laser radiation and 

porous lining of nanostructure on Rayleigh-Taylor Instability (RTI) at an ablative surface 

of a thin target shell using linear stability analysis.  We consider both incompressible 

homogeneous and compressible Boussinesq electrically conducting fluid bounded 

below by a rigid surface and above by a porous layer of nanostructure.  The growth rate 

of RTI including the effect of radiation is derived, which is analogous to the form given 

by Takabe et al (1985) for compressible fluid and that given by Rudraiah for 

incompressible fluid with porous lining.  It is shown that the magnetic field and porous 

lining greatly reduce the growth rate compared that in the absence of magnetic field and 

porous lining. The cutoff and maximum wave numbers and the corresponding maximum 

frequency are obtained.  The ratio of growth rates, are numerically computed and the 

values are tabulated for different values of the Hartmann number, slip and porous 

parameters and the results are tabulated in tables 2 and 3.  We found that combined 

effect of magnetic field and porous lining reduces the growth rate of RTI considerably 

compared to the classical growth rate.    
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1.  INTRODUCTION 

For efficient extraction of Inertial Fusion Energy (IFE) it is essential to reduce the 

growth rate of surface instabilities in laser accelerated abla tive surface of IFE target.  

The following three different types of surface instabilities are observed : 

1. Rayleigh – Taylor Instability (RTI) 

2. Kelvin – Helmholtz Instability (KHI) 

3. Richtmyer – Meshkov Instability (RMI) 

 

At present the following mechanisms are used to reduce the RTI growth rate. 

Ø Gradual variation of density assuming plasma as incompressible 

heterogeneous fluid without surface tension. 

 

Ø Assuming plasma as compressible fluid without surface tension. 

 

Ø IFE target shell with foam layer. 

 

Numerous numerical and experimental data for RTI growth rate at the ablation surface 

for compressible fluid fits. 
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Rudraiah (2003) derived an analytical expression 
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for a target lined with porous layer comprising nanotube, considering viscous 

incompressible fluid. Here γδ 2h=Β  is the Bond number, γ is the surface tension, 
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the density of porous lining and fluid respectively. Density in the range                                
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5< pρ <103 kg/cm3 ( ) 25102.7- 1.1  ink −×=  for foam metal and 

( ) 261048201 in..k −×−≈  for aloxite metal and    ε  = (0.016 – 0.027)  

 

Choosing suitable values for the constants A, ε   and β  one can fit the available data.   

Authors A ε  β nm 

Takabe et al (1985) 0.90 0.0 3.00 0.45 nbn 

Lindl et al (1995) 1.00 1.0 3.00  

Betti et al (1995) 0.98 1.0 1.70  

Kilkenny et al (1994) 0.90 1.0 3.00  

Knauer et al (2000) 0.90 1.0 3.02  

Rudraiah (2003) 
1.00 1.0 

0.75 

2.86 

0.79 nbm (α  =0.1, σ = 4) 

0.26 nbm (α  =4, σ = 20) 

 

2.  MATHEMATICAL FORMULATION. 

 
 

Fig 1. Physical Configuration 

 
The conservation of momentum: 
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The conservation of mass for compressible Boussinesq fluid  
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The conservation of energy 
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3.  DISPERSION RELATION WITH LASER RADIATION 

In this section we derive the dispersion relation as well as the temperature 

distribution incorporating the laser radiation effect.  

 
3.1 Dispersion relation 
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where n is the growth rate, l  is the wave number,   
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a constant,  av  is the velocity of flow across the ablative front given by 
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 γδ 2hB o=  is the Bond number, ( )
11

or1 fp θθδ −=  where suffix 1 denotes the 

values of θ  at  y  =1,  and  
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when M → 0,  Eq. (3.3) reduces to Rudraiah (2003) 
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In the absence of nanostructure porous lining, (k ∞→  i.e., σ →0) the growth rate (3.3) 

tends to 
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In the case of using Eq. (3.9) which is ( )pbn ;  we have 
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3av   is the same as Eq. (3.5) 

 
3.2  Temperature distribution  
 
For the shell – film 
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For the porous – silicon layer 
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where κf  and κp are the thermal diffusivity for shell – film and porous – silicon lining. 

The selection of a particular sign in Eq. (3.14) will depend on the physical situation. If 

we choose positive sign, then θp will be negative implying energy will be lost.  The 

problem considered in this paper requires the addition of energy to fuse BT.  For this we 

have to choose negative sign in Eq. (3.14) to ensure positive θp. In this paper, we 

consider the following two cases  

 
Case 1: The fluid in the shell – film and porous – silicon layer is homogeneous and 

incompressible with temperature, Tp, in the porous – silicon is assumed to 

be constant which may be higher than fluid temperature. 

 
Case 2: The fluid in the shell – film as well as in porous – silicon is assumed to satisfy 

Boussinesq approximation with varying temperature Tp and Tf. 

 

Case 1:  Homogeneous fluid 
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Set 1:  θ = 1    at    y  = 0, and θ =  θ1    at    y = 1                         (3.16) 
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Similarly the solution of Eqn. (3.15), satisfying the boundary conditions (3.17), is  
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Case 2: Boussinesq fluid  

For the shell – film  
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For the porous – silicon layer 
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1fθ   and  
1

pθ are the values of fθ  and pθ  at y  =1 

 

The solution of Eq. (3.21) and Eq. (3.22) satisfying the above boundary conditions  are 
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4.  CONCLUSIONS 

 The linear RTI in an IFE target modeled as a thin electrically conducting fluid film 

in the presence of transverse magnetic field lined with an incompressible electrically 

conducting fluid saturated nanostructured porous lining with uniform densities is 

investigated using normal mode analysis.  The main objective of this study is to show 

that the two mechanisms, having a suitable strength of magnetic filed and suitable 

porous material made up of nanostructure lining, reduce the growth rate of ablative 

surface of IFE target considerably compared to that in the absence of these two 

mechanisms. The dispersion relations given by Eqs. (3.3)  to (3.7) are analogous to the 

one given by Takabe et al., (1985) for compressible non-viscous nonelectrically 

conducting fluid as shown in Eqn. (1.2).  The dispersion relation (3.7) coincides with the 

one given by Rudraiah (2003) in the absence of Magnetic field.  The dispersion relation 

given by Eqn. (3.6) coincides with the one given by Babchin et al., (1983) in the 

absence of magnetic field (M→0) and the nanostructure porous lining (s → 0). 

 

 Setting n=0 in Eqn. (3.3), we obtain the cutoff wave number, l ct  , above which 

MRTI mode is stabilized and which is found to be  

 
          Bct δ=l             (4.1) 
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The results given by Eqs. (4.1) and (4.2) are also true even for the cases in the absence 

of both nanostructure porous lining and magnetic field.  The corresponding maximum 

growth rates, denoted by suffix m, from Eqs. (3.3) to (3.10) are  
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It will be  of  interest  to compare  these  results  with  those  given  in  Eqn. (1.2) by 

Takabe et al., (1985) for compressible fluid. In their case 
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The corresponding nm is 
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and the quantities with suffix Ta correspond to those given by  Takabe et al., (1985). 

 
Using Eqn. (4.15) Takabe et.al. (1985) have shown that the maximum growth 

rate was reduced to 45% of their classical result given by Eqn. (4.16).  From Eqn. (4.8), 

Rudraiah ,(2003) has shown that in the absence of magnetic field and in the presence 

of porous lining, the reduction of maximum growth rate depends on the characteristics α 

and σ of porous lining.  For the types of porous material, namely, foametal, α  takes the 

value 0.1 and σ ranges from 4 to 20 and for aloxite materials    α = 4 and σ ranges from 

4 to 20 (see the experiments of Beavers and Joseph (1967). Then for α  =0.1 and σ =4 

Rudraiah (2003) has shown that the maximum growth rate given by Eqn. (4.8) has been 

reduced to 78.57% of the classical value given by Eqn. (4.6). In the presence of 

magnetic field and absence of porous lining it is clear that the maximum growth rate 

given by Eqn. (4.9) depends on the Hartman number M. We note that the ratio mG1   

depends purely on nanostructured porous lining when M=0, the ratio mG2   given by 

Eqn. (4.8) will depend only on the values of M  in the absence of porous lining where as 

other ratios depend on M, a  and s .  
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Fig 2: The Growth Rate n versus wave number l  
           for M =1 and for different Bond numbers B 

The relation (3.3) is plotted in Fig.2 which is for the growth rate n versus the wave number l  

for M=1, 10.=α , 4=σ  and for different values of B. From this fig.2 we conclude that the 

perturbation of the interface having a wave number smaller than ctl  are amplified when 

).,.(0 pfei ρρδ <>  and the growth rate decreases with a decrease in B implying increase in 

surface tension. That is, increase in surface tension makes the interface more stable even in 

the case of electrically conducting fluid. Similar behavior is observed for M>1 for fixed values 

of α  and  σ  and found that increase in σ  is more significant than an increase in M in 

reducing the growth rate.  
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  Table 4: The values of b?  

σ M=0 M=1 M=10 M=20 
0 382.264 410.918 496.739 498.861 
4 403.504 423.383 496.756 498.865 
8 416.156 431.443 496.772 498.868 
12 424.549 437.081 496.786 498.871 
16 430.523 441.247 496.799 498.874 
20 434.991 444.45 496.812 498.876 

 
 

                                                          
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4 . Ablative surface Temperature b?  for different M. 
  

Table 5: The values of b?  
M σ=0 σ=4  σ=20 
0 382.3 403.5 434.99 
1 410.9 423.4 444.5 
5 486.9 487.1 487.5 

10 496.7 496.8 496.8 
15 498.86 498.86 498.88 
20 499.64 499.64 499.65 

The ablative temperature Bθ given by equation (3.20) is computed for different values of M and σ.  

The results of  Bθ  vs  M  for different values of σ are plotted in fig. 3 and Bθ  vs σ for different 

values of M are drawn in fig. 4.   From these figures, we conclude that for small values of  M and σ,  

Bθ  increases slowly and saturates for larger values of  M and σ 
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I. KHI at the ablative surface lined with nano structured porous layer in a fully developed 

two-phase composite layer using BJR condition. 
 
 In the third year of the project, in contribution 4, we have considered KHI in a sparsely 

packed porous lining, where the Brinkman equation is valid and the interface between the film 

and the porous lining is assumed to be a regular surface and using Residual shear condition.    In 

these problems the thickness of the porous layer was absent.   In many practical applications 

including IFE, it is important to find the effect of the thickness of porous lining. This can be done 

using Rudraiah (1985) boundary condition.   As the thickness bec omes very large Rudraiah 

condition tends to Beavers-Joseph (BJ -1967) condition.   Hence in the literature Rudraiah 

condition is denoted by BJR condition.   In the first quarter of the fourth year of the project, we 

propose to investiage RTI in a finite thickness of porous layer using BJR condition with the 

objective of  predicting the effect of the thickness of porous lining on the reduction of growth 

rate of KHI.   This effect is important in the design of effective IFE target. 

 

II.  Kelvin-Helmholtz  Instability at the ablative surface using external constraints of 
magnetic field and porous lining. 

 
 In the remaining quarters of the fourth year of the project, we propose to investigate the 

effect of magnetic field on the reduction of growth rate using the following cases: 

 

Case 1:  Effects of densely packed porous lining in the presence of  a  

     magnetic field on  KHI growth rate  using BJ condition. 

 
Case 2:  Effects of sparsely packed porous layer in the presence of  

magnetic field on the KHI growth rate using residual shear condition. 

 
Case 3:  Effects of sparsely packed finite thickness porous lining in  

the presence of a magnetic field on the KHI growth rate     

using BJR condition.   This condition predicts the effect of    

thickness of porous lining. 

 
Case 4:  Effects of magnetic field and roughness of the ablative    

     surface on the reduction of KHI growth rate.   The results    

     obtained in this case will be useful to take care  of the    

     roughness of the IFE design. 
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 The problem 2 posed above involves four cases and each case take considerable time 

because we have to solve plasma equations in thin film and porous lining using normal mode 

analysis, Kinematics condition in the presence of surface tension and dynamic condition. 

 

 In first quarter of fourth year we proposed to investigate the problem 1 posed above and 

in the remaining three quarters we propose to investigate cases 1 and 4 posed in problem 2 

above. 

 

If time permits, we initiate the third type of instability, namely Richtmyer and Meskov 

instability proposed in our section on “Objectives”. This instability is also important in the 

design of IFE target.   Here also, we propose to study the effects of nano structure porous lining 

and the external magnetic field using cases 1 to 4 proposed in problem 2 above. 
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   Table 2(a):Values of Gmi  for different values of M and s  =4, a =0.1 

 
M Gmo Gm1 Gm2 Gm3 Gm4 Gm5 
0.5 0.7296 0.7857 0.9092 0.9286 0.8025 0.9286 
1.0 0.6013 0.7857 0.7152 0.7653 0.8407 0.7653 
1.5 0.4657 0.7857 0.5288 0.5926 0.8806 0.5926 
2.0 0.3546 0.7857 0.3885 0.4513 0.9128 0.4513 
2.5 0.272 0.7857 0.2906 0.3462 0.9360 0.3462 
3.0 0.2122 0.7857 0.2228 0.2700 0.9524 0.2700 
3.5 0.1687 0.7857 0.1751 0.2143 0.9638 0.2147 
4.0 0.1367 0.7857 0.1407 0.1740 0.9719 0.1740 
4.5 0.1127 0.7857 0.1152 0.1434 0.9777 0.1434 
5.0 0.0943 0.7857 0.0960 0.1120 0.9820 0.1198 
5.5 0.0799 0.7857 0.0811 0.1017 0.9852 0.1017 
6.0 0.0686 0.7857 0.0694 0.0873 0.9876 0.0873 

 
 

Table 2(b): Values of Gmi  for different values of M and s  =10, a  =0.1 

 
M Gmo Gm1 Gm2 Gm3 Gm4 Gm5 

0.5 0.5896 0.6250 0.9092 0.9434 0.6485 0.9434 
1.0 0.5043 0.6250 0.7100 0.8000 0.7000 0.8068 

1.5 0.4066 0.6250 0.5288 0.6506 0.7689 0.6506 
2.0 0.3203 0.6250 0.3900 0.5100 0.8200 0.5125 
2.5 0.2520 0.6250 0.2906 0.4032 0.8673 0.4032 
3.0 0.2002 0.6250 0.2200 0.3200 0.8900 0.3203 

3.5 0.1613 0.6250 0.1751 0.2581 0.9215 0.2581 
4.0 0.1320 0.6250 0.1400 0.2100 0.9300 0.2111 

4.5 0.1095 0.6250 0.1152 0.1752 0.9503 0.1752 
5.0 0.0920 0.6250 0.0960 0.1470 0.9600 0.1474 

5.5 0.0784 0.6250 0.0811 0.1255 0.9664 0.1255 
6.0 0.0670 0.6250 0.0690 0.1070 0.9710 0.1080 
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Table 2(c): Values of Gmi  for different values of M and s  =20, a  =0.1 

 
M Gmo Gm1 Gm2 Gm3 Gm4 Gm5 

0.5 0.4775 0.5000 0.9090 0.9550 0.5250 0.9549 

1.0 0.4210 0.5000 0.7150 0.8410 0.5880 0.8413 

1.5 0.3510 0.5000 0.5290 0.7030 0.6640 0.7025 

2.0 0.2860 0.5000 0.3880 0.5710 0.7350 0.5711 

2.5 0.2300 0.5000 0.2910 0.4610 0.7930 0.4609 

3.0 0.1870 0.5000 0.2230 0.3730 0.8380 0.3733 

3.5 0.1530 0.5000 0.1750 0.3050 0.8720 0.3051 

4.0 0.1260 0.5000 0.1410 0.2520 0.8970 0.2523 

4.5 0.1060 0.5000 0.1150 0.2110 0.9160 0.2111 

5.0 0.0890 0.5000 0.0960 0.1790 0.9300 0.1787 

5.5 0.0760 0.5000 0.0810 0.1530 0.9420 0.1528 

6.0 0.0660 0.5000 0.0690 0.1320 0.9500 0.1320 

 
 

Table 3(a): Values of Gmi  for different values of M and s =4, a =4 

 
M Gmo Gm1 Gm2 Gm3 Gm4 Gm5 
0.5 0.2860 0.2941 0.9092 0.9726 0.3146 0.9725 
1.0 0.2643 0.2941 0.7152 0.8986 0.3695 0.8986 
1.5 0.2346 0.2941 0.5288 0.7978 0.4438 0.7978 
2.0 0.2029 0.2941 0.3885 0.6898 0.5222 0.6898 
2.5 0.1729 0.2941 0.2906 0.5878 0.5950 0.5878 
3.0 0.1466 0.2941 0.2228 0.4983 0.6579 0.4983 
3.5 0.1243 0.2941 0.1751 0.4226 0.7100 0.4226 
4.0 0.1058 0.2941 0.1407 0.3598 0.7524 0.3598 
4.5 0.0907 0.2941 0.1152 0.3083 0.7868 0.3082 
5.0 0.0782 0.2941 0.0960 0.2659 0.8146 0.2659 
5.5 0.0679 0.2941 0.0811 0.2310 0.8373 0.2310 
6.0 0.0594 0.2941 0.0694 0.2021 0.8560 0.2021 
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Table 3(b): Values of Gmi  for different values of M and s  =10, a =4 
 

M Gmo Gm1 Gm2 Gm3 Gm4 Gm5 

0.5 0.2614 0.2683 0.9092 0.9744 0.2875 0.9744 
1.0 0.2428 0.2683 0.7152 0.9050 0.3395 0.9050 
1.5 0.2171 0.2683 0.5288 0.8092 0.4106 0.8092 
2.0 0.1891 0.2683 0.3885 0.7050 0.4869 0.7050 

2.5 0.1624 0.2683 0.2906 0.6052 0.5588 0.6052 
3.0 0.1385 0.2683 0.2228 0.5164 0.6219 0.5164 

3.5 0.1182 0.2683 0.1751 0.4404 0.6749 0.4404 
4.0 0.1011 0.2683 0.1407 0.3768 0.7187 0.3767 
4.5 0.0869 0.2683 0.1152 0.3240 0.7444 0.3240 
5.0 0.0752 0.2683 0.0960 0.2804 0.7837 0.2804 

5.5 0.0656 0.2683 0.0811 0.2443 0.8078 0.2443 
6.0 0.0575 0.2683 0.0694 0.2143 0.8278 0.2143 

 
 

Table 3(c): Values of Gm i  for different values of M and s  =20, a =4 
 

M Gmo Gm1 Gm2 Gm3 Gm4 Gm5 
0.5 0.2528 0.2593 0.9092 0.9750 0.2780 0.9750 
1.0 0.2352 0.2593 0.7152 0.9071 0.3288 0.9071 
1.5 0.2108 0.2593 0.5288 0.8130 0.3986 0.8130 
2.0 0.1841 0.2593 0.3885 0.7101 0.4739 0.7101 
2.5 0.1584 0.2593 0.2906 0.6111 0.5453 0.6111 
3.0 0.1355 0.2593 0.2228 0.5226 0.6082 0.5223 
3.5 0.1158 0.2593 0.1751 0.4465 0.6613 0.4465 
4.0 0.0992 0.2593 0.1407 0.3862 0.7052 0.3826 
4.5 0.0854 0.2593 0.1152 0.3295 0.7413 0.3295 
5.0 0.0740 0.2593 0.0960 0.2855 0.7710 0.2855 
5.5 0.0646 0.2593 0.0811 0.2490 0.7955 0.2490 
6.0 0.0567 0.2593 0.0694 0.2185 0.8158 0.2185 

 


