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1. Design options and requirements



Prometheus-L Reactor Building Layout
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Note: Dimensions are in meters.



Options for the Final Optic

(1) SiO, or CaF, wedges

A

stiff, lightweight, actively cooled, neutron transparent substrate
- -
11.5m

(3) Thin diffractive optic (e.g., 1 mm
thick Fresnel lens)




Final Optic Damage Threats

Two main concerns:
® Damage that increases absorption (<5%)

® Damage that modifies the wavefront —
— spot size/position (200um/20um) and spatial uniformity (1%)

Final Optic Threat Nominal Goal
Optical damage by laser >5 J/cm? threshold (normal to beam)
Sputtering by ions Wavefront distortion of <A/3 * (~100 nm)
Ablation by x-rays (6x108 pulses in 2 FPY: 2.5x10 pulses
(~25 mJ/cm?, partly stopped by gas) per allowed atom layer removed)
Defects and swelling induced by Absorption loss of <5%
v-rays (~3) and neutrons (~18 krad/s) | Wavefront distortion of <A/3
Contamination from condensable Absorption loss of <5%
materials (acrosol and dust) >5 J/cm? threshold

* “There is no standard theoretical approach for combining random wavefront distortions of individual optics.
Each A/3 of wavefront distortion translates into roughly a doubling of the minimum spot size.” (Ref. Orth)




2. Transmissive optics, issues and R&D



Neutrons and y-rays create defects in SiO,
which result in photon absorption
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SiO, irradiated at LANSCE for 10! rad

SiO, samples irradiated at LANSCE for 10" 'rad
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* The non-bridging oxygen hole center (NBOHC) evidences absorption at 620
nm, while the E” and oxygen deficient center (ODC) occurs in the UV

* NBOHC is apparent for samples irradiated at 105 °C and 179 °C, while the
sample irradiated at 426 °C reveals a slow rise to shorter wavelength



Following a dose of ~10'! rad n° at 105 °C, it is possible to
anneal away the NBOHCs, ODCs, and E’ Centers
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The data 1s consistent with the simultaneous creation
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3. Reflective optics, issues and R&D



High reflectivity of metals at shallow
angles enables their use as a final optic

Reflectivity of oxidized Al to s-polarized light at 532 nm
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Normal incidence reflectivity of various metals
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GIMM development issues®

® Experimental verification of laser damage thresholds
® Protection against debris and x-rays (shutters, gas jets, efc.)

® Wavefront issues: beam smoothness, uniformity, shaping,
f/number constraints

® Experiments with irradiated mirrors
® In-situ cleaning techniques
® Large-scale manufacturing

® Cooling

* from Bieri and Guinan, Fusion Tech. 19 (May 1991) 673.



Surface deformation leads to roughening
and possible loss of laser beam quality
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» F, varies from a few to ~ 10 J/cm?.

» LIDT is a strong function of material
& number of shots — it degrades up to
a factor of 10 after only 10000 shots
(survival to ~108 shots is needed).

»  Uncertainty in saturation behavior

» Single Shot Effects on LIDT:
» Laser heating generates point defects

»Coupling between diffusion and elastic
fields lead to permanent deformation

» Progressive Damage in Multiple Shots:

» Thermoelastic stress cycles shear atomic
planes relative to one another (slip by
dislocations)

» Extrusions & intrusions are formed when
dislocations emerge to the surface, or by
grain boundary sliding.



Laser Damage Experiments on Metal Mirrors

Spectra Physics YAG laser:
2J, 10 ns @1064 nm;
800, 500, 300 mdJ @532, 355, 266 nm
Peak power density ~10* W/cm?




The two principle methods of fabrication
are diamond turning and substrate coating
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75 nm Al on superpolished flat:
+2A roughness, 10A flatness

E-Beam Al (2 um)

CVD-SiC (100 um)

SiC Foam (3 mm)

Composite face (1 mm)

SiC Foam (3 mm)

| Al 1100 showing grain boundaries
MER composite mirror and tool marks




Damage to aluminum at grazing angles

Several shots in Al 6061 at 80°, 1 J/cm?

diamond-turned Al 6061

Surface Stats:

Rai 6.95 nm

Fg: 9.19 nm
Rt 326.27 nm MgSi occlusions

WD = 27 mm Detector = SE1

Mag= 1.00 KX
EHT = 20.00 kV Photo No. = 680  Date :16 May 2001

Silicide occlusions in Al 6061 preferentially absorb light,
causing explosive ejection and melting at only 1 J/cm?;
Fe impurities appear unaffected



Damage to Al-1100 at grazing angles

1000 shots in Al 1100 at 85°, 1 J/cm? 10000 shots in Al 1100 at 85°, 20 J/cm?
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Exposure of Al 1100 to 1000 shots at Exposure of Al 1100 to 10000

85° exhibited no damage up to 18 J/cm? shots at 85" exhibits catastrophic
damage at fluence >20 J/cm?



Damage Regimes for Al-1100
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Damage to pure Al at grazing angles

Single pulse in pure Al at 85°, 180 J/cm?  10°shots, above the damage threshold

—

Mag= 130X WD = 20mm Detector = SE1
EHT = 20.00 kv Photo No. = 414  Date :28 Aug 2001

99.999% pure Al survives single Under cycling loading, a variety of
shot damage up to the melting limit thermomechanical phenomena emerge



Damage Regimes for 99.999% pure Al
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Why do the mirrors survive beyond the yield point?

Estimate of energy required to cause plastic deformation:
20,=E a AT /(1-v) fully-constrained, ratchetting limit
E =75 GPa, v=0.33, o= 25x10°°
o, = 13-24 ksi (150-200 MPa)
AT ~71-107°C
e ~16-24 J/cm?

Laser irradiation field

thin film

substrate

e Nonuniformities in the beam?
* AL O, capping layer stabilizes the interface?
* Something about grazing incidence irradiation stabilizes the instability?



