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The key heavy-ion thick-liquid chamber phenomena
include liquid hydraulics and vapor condensation
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Cut-away view shows beam and target injection paths
for a 160-beam example thick-liquid chamber
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IFE phenomena span an extremely wide range of scales

• Time:  10-8  sec — 109 sec
– Target drive — chamber life time

• Length:  10-6  m —  103 m
– X-ray ablation layers — driver dimensions

• Temperature: 10 K — 107 K
– Cryogenic targets — post-ignition target debris

• Pressure: 1012 Pa  —  10 -1 Pa
– X-ray ablation layers — pre-shot beam-line vacuum

• Matter states
– Solid — liquid — vapor — ionized plasma

Few topics share these scale extremes:  Astrophysics,
    reactor safety analysis, global climate modeling…
Complexity makes appropriate scaling methods essential
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IFE system phenomena cluster into distinct time scales
• Nanosecond IFE Phenomena

– Driver energy deposition and capsule drive (~30 ns)

– Target x-ray/debris/neutron emission/deposition (~100 ns)

• Microsecond IFE Phenomena
– X-ray ablation and impulse loading (~1 s)

– Debris venting and impulse loading (~100 s)

– Isochoric-heating pressure relaxation in liquid (~30 s)

• Millisecond IFE Phenomena
– Liquid shock propagation and momentum redistribution (~50 ms)

– Pocket regeneration and droplet clearing (~100 ms)

– Debris condensation on droplet sprays (~100 ms)

• Quasi-steady IFE Phenomena
– Structure response to startup heating (~1 to 104 s)

– Chemistry-tritium control/target fabrication/safety (103-109 s)

– Corrosion/erosion of chamber structures (108 sec)
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IFE chamber time histories show that major subgroups
of phenomena are decoupled in time
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IFE has intriguing complexity characteristics

• Strong phenomena decoupling occurs in both time and space
– Spatial decoupling boundaries

» small or unidirectional mass and energy fluxes

» large time scale differences—slow side sees integral effect of
fast

– Temporal decoupling boundaries

» large time scale differences —slower
phenomena sees integral effect of fast

– Inside these boundaries, phenomena
interactions must be considered

» integral experiments must preserve key
phenomena at reduced length/energy

S. Levy, 1999
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All IFE scientific topics can be identified and
characterized by time scale and spatial location

Time Scale (Phenomena Duration)
Spatial Volume Nanosecond

(Target Gain)
Microsecond Millisecond

(Rep. Rate)
Quasi-Steady

(Safety/Reliab.)
Capsule Neutron/ion/

x-ray emission
—

Hohlraum (if used) X-ray and debris
emission

—

Driver energy transport paths Beam transport
and focusing

Debris
accumulation

Pocket Void/Vent Paths — —

External Condensing Region —

Target debris
expansion/

interaction with
ablation debris,
venting, impulse

Debris
condensation

—

Target-facing Surface Layers X-ray deposition Ablation/impulse

Blanket (liquid/solid) Neutron heating
relaxation

Liq. hydraulics/
solid thermal

mechanics

Activation, neutron
damage (solids),

safety

Final focus elements — — Damage rate

Chamber structures

Neutron and
gamma

deposition

— —

Coolant recirc./heat recovery
loop

— — —

Safety,  tritium,
activation,
corrosion

Accelerator/laser systems Driver physics — Driver rep. rate and reliability

Target injection — — Accel./heating —

Target fabrication — — — Safety/reliability

Balance of plant — — — Safety/reliability
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Nanosecond phenomena control scientific viability

Time Scale (Phenomena Duration)
Spatial Volume Nanosecond

(Target Gain)
Microsecond Millisecond

(Rep. Rate)
Quasi-Steady

(Safety/Reliab.)
Capsule Neutron/ion/

x-ray emission
—

Hohlraum (if used) X-ray and debris
emission

—

Driver energy transport paths Beam transport
and focusing

Debris
accumulation

Pocket Void/Vent Paths — —

External Condensing Region —

Target debris
expansion/

interaction with
ablation debris,
venting, impulse

Debris
condensation

—

Target-facing Surface Layers X-ray deposition Ablation/impulse

Blanket (liquid/solid) Neutron heating
relaxation

Liq. hydraulics/
solid thermal

mechanics

Activation, neutron
damage (solids),

safety

Final focus elements — — Damage rate

Chamber structures

Neutron and
gamma

deposition

— —

Coolant recirc./heat recovery
loop

— — —

Safety,  tritium,
activation,
corrosion

Accelerator/laser systems Driver physics — Driver rep. rate and reliability

Target injection — — Accel./heating —

Target fabrication — — — Safety/reliability

Balance of plant — — — Safety/reliability

Nanosecond phenomena:

•  Target gain
    >  Must be understood to judge
          the scientific viability of IFE

•  Target output
    >   Must be understood to
              predict chamber response



UC Berkeley

Millisecond phenomena control repetition rate

Time Scale (Phenomena Duration)
Spatial Volume Nanosecond

(Target Gain)
Microsecond Millisecond

(Rep. Rate)
Quasi-Steady

(Safety/Reliab.)
Capsule Neutron/ion/

x-ray emission
—

Hohlraum (if used) X-ray and debris
emission

—

Driver energy transport paths Beam transport
and focusing

Debris
accumulation

Pocket Void/Vent Paths — —

External Condensing Region —

Target debris
expansion/

interaction with
ablation debris,
venting, impulse

Debris
condensation

—

Target-facing Surface Layers X-ray deposition Ablation/impulse

Blanket (liquid/solid) Neutron heating
relaxation

Liq. hydraulics/
solid thermal

mechanics

Activation, neutron
damage (solids),

safety

Final focus elements — — Damage rate

Chamber structures

Neutron and
gamma

deposition

— —

Coolant recirc./heat recovery
loop

— — —

Safety,  tritium,
activation,
corrosion

Accelerator/laser systems Driver physics — Driver rep. rate and reliability

Target injection — — Accel./heating —

Target fabrication — — — Safety/reliability

Balance of plant — — — Safety/reliability

Millisecond phenomena:

•  Control the repetition rate
    >  Must be understood to judge the
            engineering viability of IFE

•  Initial conditions
    >   Created by nanosecond and
            microsecond phenomena
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Quasi-steady phenomena control safety and reliability

Time Scale (Phenomena Duration)
Spatial Volume Nanosecond

(Target Gain)
Microsecond Millisecond

(Rep. Rate)
Quasi-Steady

(Safety/Reliab.)
Capsule Neutron/ion/

x-ray emission
—

Hohlraum (if used) X-ray and debris
emission

—

Driver energy transport paths Beam transport
and focusing

Debris
accumulation

Pocket Void/Vent Paths — —

External Condensing Region —

Target debris
expansion/

interaction with
ablation debris,
venting, impulse

Debris
condensation

—

Target-facing Surface Layers X-ray deposition Ablation/impulse

Blanket (liquid/solid) Neutron heating
relaxation

Liq. hydraulics/
solid thermal

mechanics

Activation, neutron
damage (solids),

safety

Final focus elements — — Damage rate

Chamber structures

Neutron and
gamma

deposition

— —

Coolant recirc./heat recovery
loop

— — —

Safety,  tritium,
activation,
corrosion

Accelerator/laser systems Driver physics — Driver rep. rate and reliability

Target injection — — Accel./heating —

Target fabrication — — — Safety/reliability

Balance of plant — — — Safety/reliability

Quasi-steady phenomena:

•  Control safety
    >  Must be understood to judge the
            engineering viability of IFE
             and of experimental facilities

•  Control reliability
    >  Must be understood to judge the
            attractiveness of IFE
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Nanosecond/Microsecond Phenomena Overview
• Nanosecond Phenomena:

– Driver final transport

» Coordinated with HI-VNL
researchers

– Target x-ray/debris/neutron emission

» 1-D Lasnex calculations have given
better understanding of target output

– Neutron shielding/energy deposition

» 3-D TART calculations have been performed

• Microsecond Phenomena
– Upcoming Z experiments will study x-ray ablation with prototypical

chamber coolants

– Extensive 1-D (Bucky) and 2-D
(Tsunami) calculations have been done
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Scaling for millisecond liquid hydraulics preserves the
liquid trajectory and surface configuration

Mass and momentum conservation (incompressible flow)

∇ ⋅v = 0                  
∂v
∂t

+ v ⋅ ∇v
 
 

 
 = −∇p + ∇2v + g

Free surface pressure boundary condition with impulse load I

p − pv =
1

r1

+
1

r2

 
 
  

 
                where     pv ,ave =

IU

L
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U

L
pv dt

0

L U

∫
Nondimensionalize with appropriate scaling parameters:

v* = v/ U       ∇* = L∇     p* = p/ U 2      t* = f t         r* = r / L    pv
* =

pv L

IU
Giving governing equations:

∇* ⋅ v* = 0         St
∂v*

∂t*
+ v* ⋅ ∇*v* = −∇*p* +

1

Re
∇*2

v* +
1

Fr

g
g

p* − I*pv
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1
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1

r1
* +

1
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*

 

 
 

 

 
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Major IFE simplification:
   No EOS, No energy equation
   No MHD

A scaled system behaves identically
if initial conditions and St, Re, Fr,
I*, and We are matched...
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Recent experiments show that cylindrical jets can be
sufficiently smooth for beam-line protection

honeycomb
Re = 100,000

screen/nozzle

cutter blade Re = 70,000 (no conditioning)

Re = 186,000

Jet with 1.5 : 1.0 nozzle
contraction ratio

Flow Conditioning
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Cylindrical jets can be arrayed for beam-line shielding

• Staggered geometry reduces collimation of liquid droplets and slugs
down beam lines

• Pitch to diameter ratio Pn/2rJn will be between 1.6 and 2.5

rJnj

rEnj

rNnj

n

n-1/2

n-1

Pn

Staggered Jet Array Cross Sections Nozzle Cross Section

Cutter Discharge
Collection Tray

Cutter Blades
Attach to Bottom
of Nozzle Block

Beam Standoff
Envelope
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Single-jet experiments provide jet geometries for
constructing integrated pockets

        UCB Stationary Jets (1.6 cm x 8.0 cm,
view from flat side, Re = 160,000, We = 29,000)

     Bad:
Breaks up     Better: No Droplets

Stationary          Oscillating
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Vacuum Hydraulics Experiment (VHEX) studies IFE
jet disruption and regeneration

• Create hydrodynamically similar single
jets and several jet arrays

• Transient flow into large vacuum
vessel—water simulates flibe

t = 0 t = 0.8 ms
(muzzle flash)

t = 1.6 ms
(plume has hit)

t = 32 ms
(peak deflection)

Impulse load
calibration underway

UCB
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Cartridges can provide required impulse loading

Single-jet disruption at 10.3 Hz

0 ms 11 ms 22 ms 34 ms

45 ms 57 ms 68 ms 80 ms

92 ms 104 ms 116 ms 127 ms
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Models predict that porous liquid will strongly mitigate
shocks

• Impulse from x-ray ablation
and pocket pressurization
generates shock

• Simple “snowplow” model
gives shock transit time as
function of liquid void fraction

 :

• Shocks require > 100 ms to
arrive at outside of porous
pocket liquid

• Caveat:  pocket openings may
collimate high-velocity liquid
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Multiple jet experiments will start soon

• Numerically controlled machining allows precision fabrication of
multiple nozzles

96-nozzle system uses sheet jet and multiple cylindrical jets
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Future directions

• Build further our understanding of multiple jet interactions
– Colliding jets (G. Tech. experiments, UCLA CFD)

– Shock transport through multiple jet arrays (UCB experiments)

– Clearing between crossed jet arrays (UCB experiments)

– Effect of debris on droplets, films and jets (UCLA experiments)

• Continued exploration of fundamental fracture and
recombination phenomena (EOS/modeling/design data)

– Z experiments on flibe ablation

– Laser fracture experiments to measure liquid strength (UCLA,
UCSD)

– Flibe electrathermal plasma source (UCLA)


