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Electricity is the most preferred form of energy as it can be easily produced, transported and 
converted into heat, light and motion. Eighty four percent of the world’s electrical energy 
comes from fossil fuels such as coal, oil or gas. All of which are nonrenewable and the 
remaining sixteen percent of the world’s electricity is supplied from 439 nuclear reactors in 
operation. In some countries a significant part of electricity comes from nuclear sources. 
Different types of reactors are operating in these countries and each country makes its own 
selection based on their suitability with respect to local conditions, availability of technology, 
availability of fuel, safety, manufacturing infrastructure, economy etc. The choice of reactors 
for Indian Nuclear Programme is also based on specific Indian conditions particularly 
available nuclear fuel resources. Due to fast depletion of fossil fuels and vagaries of mansoon, 
renewable energy sources are also important contributions, particularly for rural areas in 
India. However, bulk energy needs of industries and dense urban population requires large 
central generating stations to provide uninterrupted supply of electricity. One of the future 
effective centrally generating energies is the fusion energy.  
  
In this regard the IAEA has identified Inertial Fusion Energy (IFE) and Magnetic Fusion 
Energy (MFE) as an alternate sources of energy. In addition, the Thermonuclear Reactor 
Energy (TNRE) is also going to be useful source of energy. The IAEA has identified the 
following major components of IFE Power Plants (i) Driver (ii) Fuel Pellet (iii) Chamber and 
(iv) Power Conversion.  Recently significant advances in high energy drivers, such as high 
energy and high intensity lasers, pulsed power and intense ion beams and target physics 
experiments have led to a great expansion of the knowledge of inertial fusion science and its 
application. It has become possible to foresee the path towards IFE as a future energy source 
because of the progress observed in the high repetition rate reactor driver development. Laser 
compressed core densities in excess of 1000 tones solid densities have been demonstrated. In 
several countries (for example USA, Europe, Japan and so on), research projects have started 
to establish the scientific principle of ignition and high energy gain. In some countries 
mentioned above  PW laser systems have been constructed to study the heating of compressed 
cores which are based on the new concept “fast ignition”. These scientific studies will give 
important physics database to engineering in order to realize IFE as a commercial energy 
source. 
 
This in view, IAEA has entrusted the following research objectives to CRP:  (i) Technology assessment (ii) 
Interface issues, and (iii) system integration and assessment. We at the NRIAM proposed to study laser driven 
ablative surface instability. In ICF, it is shown that continuous inward acceleration of spherical shells by ablation 
pressure alters the outer surface. Here spherically symmetric calculations of the behavior of laser driven fusion 
targets have demonstrated major advantages of employing ablatively imploded spherical shells for obtaining 
optimum performance. The use of solid pellets in the form of shells opposed to solid sphere has been shown to 
reduce significantly the peak laser power required to drive successfully a target of fixed mass. To overcome the 
major inconvenience due to the location of segregation of inner skin of shells, hollow shells have been employed 
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(see Bocquet et al , 1990). However, the hollow shell targets are shown to be hydrodynamically unstable in the 
ablation region where the pressure and density are of opposite signs (Mccrory  et al, 1976). The surface 
instability in this region is due to heavy fluid supported by a lighter fluid i.e. lighter fluid accelerating the denser 
fluid is similar to classical Rayleigh – Taylor (RT) instability but complicated by finite density scale lengths. The 
instability in the hollow shell may reduce the efficiency of the fusion reaction and there should be a mechanism 
to control this instability. In the present work we propose the use of porous shells instead of hollow shells for the 
resistance offered by the solid particles in a porous medium reduces the instability considerably. We show that 
the permeability of the porous region scaled with Reynolds number decreases considerable the growth rate of 
instability compared to that of a hollow shell resulting in increase of efficiency of the fusion reaction. To achieve 
this object we discuss the mathematical formulation in section 2.  To derive the dispersion relation we use 
moment formulation in section 3 rather than the usual energy formulation. The actual difficulty that the 
discontinuity  in classical shear that exists at the interface using the energy method is shown to over come using 
moment formulation. The dispersion relation is obtained in section 4. Several particular cases are derived in 
section 5 and the results are discussed in the final section.  
 

2. Mathematical Formulation 
  
The physical configuration to be studied consists of three-dimensional rectangular densely packed fluid saturated 
porous medium as shown in the fig.1. The basic equations for an incompressible heterogeneous fluid in the 
absence of inertia (because the porous layer is densely packed) is given by 
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where ( )wvuq ,,=�  are the components of  Darcy velocity, µ the viscosity of the fluid, g the 
acceleration due to gravity, T the surface tension and zs is the interface. Here, equation (2.1) is 
the Darcy equation in the presence of gravitational and surface tension forces and equation 
(2.3) is the condition for heterogeneity. Here, we are interested in studying the instability of 
the interface subject to linear theory using normal mode analysis in which all the dependent 
variables are assumed to be of the form  
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where l and m are the horizontal wave numbers with 22 ml +=α  is the wave number and n 
is the frequency of oscillations. 
Eliminating the pressure p from equation (2.1) using (2.2), (2.3) and (2.4), we get the stability equation  
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3. Moment Formulation 
 
We note that the analytical solution of (2.5) is difficult because of variation in density. In such 
cases, early work on RTI (see Chandrasekar, 1961) was based on energy approach, which 
requires boundary conditions on higher order  derivatives of w. Recently, Mikaelean (1992) 
has discussed a simple model for ablative stabilization in the absence of a porous medium 
using the moment approach which does not require higher order boundary conditions. In this 
work, following Mikaelean (1986), we study RTI in a porous medium using the moment 
approach as explained below. 
  

Multiplying equation (2.5) by wm, and integrating with respect to z, we get  
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Here m = 1 gives energy formulation and m = 0 gives moment formulation.  
 
4. Dispersion Relation 
 
To derive the dispersion relation analytically, we assume the effect of density variation shown  
in fig and given by the following equation 
 

FIG. 1 THE DENSITY PROFILE OF AN  
            ABILATIVE DRIVEN TARGET 
 
Here, the interface is the ablative surface, the region –h ≤ z ≤ δh is called the blow off region and the region 0 ≤ z 
≤ δh is called the shell, which is porous. The driven surface is at z=0 and the backside is at z=δh. 
Using the classical solution (i.e. ρ is a constant) of (2.5), namely 

zew α−=                                                                                                                  (4.2) 

and the density given by (4.1) in (4.2) and taking m=0, we obtain  
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Using  (4.2), we get  

( )










>

≤≤

≤<
≤

=

hz0

0z0

0zh-

-hz0

p

p

δ
ρ
ρ

ρ
β ze

z
(4.1) 



 4







≤<−
≤≤

=
hze

ze
w

δα

α

z0              

0 zh  -              
 

Then,  
 




 −−−−=∫
−+∫ ∫

−
= hehe

h
dzze

h
dzzedzw δαα

α

δ αα 2
1

  
0

0
                                                  (4.4)  

 

( ) ( ) 


 −−+


 +−−
+

=∫ ∫
−

∫
−++= he

phe
h

h dzzepdzzepdzw δα
α

ρβα
βα

ρδ αραβρρ 11
p

  
0

0
 (4.5)  

Similarly, we get 
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Then, equation (4.3) using (4.4), (4.5) and (4.6) take the form 

0
2

3

2

1
2

=−+
I

I

I

I

kg

n

g

n υ
                                                                                                (4.7)  

 where 

( ) 


 −−−−+= heheI δααβα 21
,       

( ) 


 −−++




 +−
−=





he

h
eI

δαβα
βα

α 112
 , 

( ) ( ) 









+−




 +−
−−


 −−+=






gp

sTh
eheI

ρ
βαα

βα
αδαβαα 2113  

We note that typical values of h are very large, usually m 500 µ≥h (see Mikaelean 1992) and 

hence we consider here the case h→∞. 
As h→∞, equation (4.7) take the form 
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From this equation, we derive the following particular cases for the dispersion relation. 
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5. Particular Cases : 
 
5.1.  Long Wavelength Perturbation  
 

In this case, we consider long wavelength perturbation i.e. α<<β. Then equation (4.8) reduces 
to  
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In the absence of porous media i.e. as k → ∞, we get  
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We note that in the absence of surface tension, that is when Ts=0, we get the classical result of Taylor (1950). 

gn α=2                                                                                                                     (5.3) 

Physically, this assumption of α<<β implies that the density variation is negligible for long 
wavelength. 
 
5.2. Large Shell Thickness (i.e. ∞→hδ  )  
 
In this case equation (4.8) takes the form  
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This corresponds to a layer of infinite extent (i.e. h→ ∞, δh→ ∞).  
In the absence of porous media i.e. k → ∞, equation (5.4) reduces to  
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This is valid for an incompressible homogeneous inviscid fluid in the absence of porous media. In the absence of 
surface tension, the above equation reduces to the result of Mikaelean (1986), namely 
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5.3. Short Wave Length Perturbation 
 
For short wave length perturbation, that is α>>β, equation (4.8) can be written as  
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As ∞→hδ , this equation takes the form  
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In the absence of porous media, the above equation reduces to  
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In the absence of surface tension, this equation reduces to  

β g 5.02 =n  
which is half the classical value of  Rayleigh (1900) for the exponential density profile. 
 
5.4. Absence of Shell Region  
 
In the absence of shell region i.e. δh=0, the equation (4.8) becomes  
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In the absence of porous media, this reduces to  
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In the absence of surface tension, this equation reduces to  
gn α−=2  

which is the classical result of Taylor (1950). 
 
5.5. Finite Shell Thickness 
 
In this case δh is finite. We note that equation (4.1) divides the density profile into two classes such as thick 
profile defined as β δh ≥ 1 and a thin profile defined as β δh<1. Then, equation (4.8) takes the form  
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The reduction of the growth rate below the classical, namely, 5.0)( −gn α
 

is plotted using the 
equation (5.12). 
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where R is the modified Reynolds number based on the classical frequency and B is the Bond number.  
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Equation (5.13) has two roots given by  

)4(5.0 5
2

441 fffn +±−=                                                              (5.14) 

These are the required dispersion relations. We note that f5 is always negative and hence n1 

and n2 may be real or complex depending on 5
2

4 ff >  or 5
2

4 ff <  with a negative real part. 

The numerical computation shows that n1 and n2 are complex conjugates, and hence the 
system is oscillatory stable, i.e. over stable. Equation  (5.14) is computed  numerically  for  
three  thick  profiles 20,10,5=hδβ and one thin profile βδh =0.5, where n (αg)-0.5 is drawn 
against hδβ , and are depicted in figs. 2 (a) to 2 (e). The results are discussed in the next 
section.  
 
6. Conclusions  
 
The linear RTI of ablation surface is investigated by considering a three-dimensional densely 
packed porous shell of different thickness h1 (=αδh, large, small and zero) and for large and 
small wavelength perturbations. The dispersion relation is computed numerically for different 
values of h1, modified Reynolds number R = 10 and 100 and Bond number B = 0.1 to 0.4 and 
the results are shown in Figs. 2(a) to 2(e). We see from fig. 2(a) that for R= 10 and different 
h1 the system is always stable. However, for R = 100 and for small h1 the system is stable, 
whereas for increase in h1 all the three modes of instability exist and the system moves from 
unstable to stable state and approaches asymptotically to the neutral state (see fig (2b)).  The 
dispersion relation is also computed for different values of modified Reynolds number for     
h1=0.5 in fig (2c) and h1= 5 in fig (2d).  In both the cases we see that the increase in R 
decreases the growth rate and approaches towards more stable state. The increase in R means 
the decrease in growth rate and hence more suitable for control of stability which is 
favourable to increase the efficiency of IFE power plant. 
 
The dispersion relation is also computed for different values of Bond number B and the results 
are depicted in fig 2(e).  For all values of B upto 0.03 the system is stable. However, for 
B=0.01 the growth rate decreases for α1 upto 0.5 and then approaches asymptotically the 
neutral curve. For other values of B the growth rate decreases for α = 0.6 and then approaches 
asymptotically neutral curve. 
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FIG. 2 a & b – Re (n1) Vs. α1 FOR DIFFERENT VALUES OF h1 

(a) (b) 

(c) (d) 

FIG. 2 e – Re (n1) Vs. α1 FOR DIFFERENT VALUES OF B  

FIG. 2 c & d – Re (n1) Vs. α1 FOR DIFFERENT VALUES OF R 
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FIG. 2 c – Re (n1) Vs. α1 FOR DIFFERENT VALUES OF R 

FIG. 2 d – Re (n1) Vs. α1 FOR DIFFERENT VALUES OF R 

FIG. 2 e – Re (n1) Vs. α1 FOR DIFFERENT VALUES OF R 


