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OUTLINE

� Choice of Aspect Ratio, A (Optimum @ 2?)
— Resulted from the evaluation of NC and SC power and testing reactors as a

function of A and elongation, κ
� MHD basis
� Systems study calculations
� Results leading to A=2

� Actinide burn evaluation for NC, A=2, κ=2 and 3, fusion power = 50, 100, and
200 MW, and devices at different blanket energy multiplication, EM
— Major radius
— Neutron wall loading
— Re-circulating power
— Net electrical power production
— Capital cost
— COE
— Power density
— Conversion rate
— The value of conversion rate
— Pure fusion designs

� Conclusions
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CHOICE OF ASPECT RATIO

� At recent IAEA meeting we presented a paper on “Toroidal Reactor Designs as a
Function of Aspect Ratio and Elongation” [1]

� Do power reactors optimize at lower aspect ratio, A, as indicated by earlier
systems studies?

� We evaluated the superconducting coil (SC) and normal conducting coil (NC)
power and testing reactors as a function of A from 1.2 to 6 and elongation
κ = 1.5, 2 and 3

[1] C.P.C. Wong, J. Wesley, R.D. Stambaugh, E.T. Cheng, “Toroidal Reactor Designs as a

Function of Aspect Ratio and Elongation,” Proc. 18th IAEA Fusion Energy Conference,

October 4–10, 2000, Sorrento, Italy
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MHD STABILITY BASIS

� We used the extended equilibria of 1.2 < A < 6 and κ = 1, 2, and 3

— For the range of A from 1.2 to 3, R.L. Miller [1] found plasma equilibria that are
stable to infinite-n ballooning and, with assumed wall stabilization to low-n
kink modes at a bootstrap fraction of 99% for κ = 1.5, 2, and 3

— We parameterized these results to perform parametric investigations of A and
κ variation with our systems model

— For our calculations, we used a bootstrap fraction of 90% to determine βN, βT,
and βp and estimated the re-circulating power for normal and
superconducting coil designs including neutral beam current drive

[1] R.L. Miller, et al., “Stable Bootstrap-Current Drive Equilibrium for Low Aspect
Ratio Tokamaks,” Proc. ISPP-17 Workshop on Theory of Fusion Plasmas, August
26–31, 1996, Varenna
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METHOD OF SYSTEMS CALCULATIONS

� A systems study including physics, engineering, costings, and with necessary
design constraints

— Starts with the inboard toroidal field (TF) coil radial build, Jc of central
column, A, κ, plasma profiles, and δx (standoff distance between the coil and
the plasma), βN can be calculated

— Bo, βT, and βp can be calculated with reactor geometry

— nDT and fusion power can be calculated

— Electrical power and neutron wall loading (Γn) are determined iteratively

— COE and capital cost can be estimated

The power reactor costing

� ARIES systems code, based on 1992$

The test reactor costing

� ITER-FDR design, based on 1999$
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RESULTS OF SYSTEM STUDIES

� An intermediate-A NC design with high elongation could provide scientific and
engineering data to support future SC or NC reactors development

— COE of SC power reactor is lower than NC power reactors

— NC and SC reactor designs have minimum COE towards lower A~2. Higher κ
allows broader minimum

— Captial cost of NC test reactors, for similar fusion power, is significantly lower
than equivalent SC designs because of smaller inboard standoff distance

— A NC test reactor at A~2 and κ~3 could produce 200 MW fusion power at
1.23 MW/m2 average neutron wall loading at a total capital cost of ~$654M

— This device could also be a toroidal device for early application of fusion
neutrons and burn ~1270 kg of actinide per full power year
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PARAMETERS OF INTEREST

� Therefore it would be interesting to investigate the estimated actinide burn rate of
A=2 devices for κ=2 and 3 and for fusion power output at 50, 100, and 200 MW,
represented by blanket energy multiplication values, EM [1]

� Lower elongation could indicate more ease in maintaining plasma stability

� The volumetric power density similar to LMFBR, from 300–600 MW/m3 is used to
indicate the credible regime of blanket thermal designs

[1] EM is defined as the energy multiplication over the energy of 14 MeV neutrons, and the

actinide burn rate conversion is assumed to be: 1000 kg burn/year at 3 GWth
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INPUT PARAMETERS FOR NORMAL CONDUCTING, A=2
ACTINIDE BURN DEVICES

TF central column, Jc, MA/m2 15.4

Number of TF coils 12

Outboard TF coil leg thickness, m 0.7

Inboard shield thickness, m 0.1

Outboard blanket thickness, m 0.8

Outboard shield thickness, m 0.2

Coil water coolant volume fraction 0.15

Coil water Tin/Tout (°C/°C) 30/50

Central column taper 1.5

Thermal conversion efficiency, % 33

Material fluence limit, MW . y/m2 15
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* Not including fission related costs
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� COE converges at higher blanket EM and levels for EM > 100

� COE is lower at higher elongation and higher power output
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Value of conversion rate with κ=2 Value of conversion rate with κ=3
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A LOW FUSION POWER 50 MW TOROIDAL DEVICE AT A=2 and κ=2
COULD BE TURNED INTO A VERY EFFICIENT ACTINIDE BURNER

Actinide burn rate kg/year

� (Conversion factor @ 1000 kg burn/year at 3 GWth and including the estimated
impact from availability, normalized to 75% at Γn = 4 MW/m2)

κ = 2 κ = 3

Pfusion/Q''' 300 MW/m3 600 MW/m3 300 MW/m3 600 MW/m3

50 MW 1000 (M=100) 2000 (M=200) 750 (M=70) 1400 (M=155)

100 MW 1200 (M=51.5) 2500 (M=1300) 1000 (M=45) 1800 (M=80)

200 MW 1400 (M=30) 3000 (M=65) 1000 (M=20) 2000 (M=70)
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SELECTED DESIGN PARAMETERS FOR NORMAL CONDUCTING
COIL, A=2 PURE FUSION DEVICES

1 2 3 4 5 6
κ 2 2 2 3 3 3
Pfusion, MW 50 100 200 50 100 200
Ro, m 1.92 2.09 2.274 1.42 1.53 1.66
Bootstrap Fraction 0.9 0.9 0.9 0.9 0.9 0.9
n shape factor 0.25 0.25 0.25 0.25 0.25 0.25
T shape factor 0.25 0.25 0.25 0.25 0.25 0.25
Rcoil, m 0.812 0.895 0.987 0.558 0.615 0.678
Bo, T 2.82 3.15 3.52 1.81 2.03 2.28
βN 5.4 5.4 5.4 6.65 6.65 6.65
βT, % 10.8 10.8 10.8 33.2 33.2 33.2
Triagnularity 0.4 0.4 0.4 0.4 0.4 0.4
Ip, MA 5.38 6.54 7.95 6.39 7.77 9.44
ni, 1020/m3 0.66 0.824 1.03 0.836 1.06 1.33
q@95% flux surface 6.3 6.3 6.3 5 5 5
ne/nGW 0.37 0.45 0.544 0.213 0.26 0.314
Plasma volume, m3 72.6 92.45 118.2 45 56.2 70.6
FW area, m2 122 143.6 169.4 92 107 124.8
NB CD power, MW 0.3 0.5 0.83 0.33 0.56 0.93
Power recirculating, MW 55.64 76.13 105.4 28.67 39.7 56.1
Blanket EM 1.1 1.1 1.1 1.1 1.1 1.1
Ave, Γn, MW/m2 0.31 0.53 0.9 0.41 0.71 1.23
Capital cost, $M 300 449 718 256 396 654
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CONCLUSIONS

� We have investigated relatively small toroidal devices with major radius from 1.5
to 2.27 m

� Higher elongation leads to higher average neutron wall loading and lower
re-circulating power

� Capital cost is not sensitive to elongation

� Actinide burn rate can be designed to the range of 1000–3000 kg/year with A=2,
and elongation = 2 or 3 devices

� COE is lower at higher elongation and higher blanket EM and power output

� COE converges and levels at blanket EM > 100 to ~75 mil/kWh

� The value of actinide rate, (kg/year per $M capital cost) also levels off for blanket
EM > 100

� A 50 MW toroidal device at κ = 2 could be a very efficient antinide burner,
provided the physics is validated by experiments


