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Historical Background

• Since the earliest days of the fusion program, material choices have
long been recognized as a way to minimize hazards and thus help
demonstrate the safety and environmental potential of fusion power
plants
– Decay Heat and Radioactive Inventory
– Chemical Energy Sources
– Activation Product Mobilization
– Tritium Permeation and Inventory
– Waste Management Options

• Over the past decade, a realization that focusing solely on
smart/prudent materials selection was not enough, in large part since
regulations have gotten stricter.  Safety/design integration and much
improved safety analysis were needed to  improve the safety and
environmental picture for fusion while at the same time having the
side benefit of removing unnecessary constraints on the system
– Integral state of the art systems safety analysis
– Passive safety implementation



Overall Themes
• As the design of fusion

power plants has improved
and more details have
become available,
– the level and

sophistication of the
safety and
environmental analysis
has increased

– the integration of safety
and design has
improved

– R&D has been focused
to solve problems



Safety/Design Integration

• Early in the program safety/design integration was
viewed as less important given all the constraints on
the system. There was a lack of effective
communication and understanding between safety
and design.

• Safety and environmental considerations were key
drivers in previous ARIES designs, especially in
materials selection.

• In the last decade, the ITER project has shown that
early implementation of safety in the design process
is key to solving safety



Confinement in the ITER-EDA design
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Energy Sources

• Fusion has a number of energy sources that in an off-
normal event could threaten to mobilize radiological
or toxic material inventories
– Decay heat
– Chemical reactions
– Magnets
– Plasma

• How we address these issues has changed over the
years



Decay heat and chemical reactivity
evaluations

• Important safety issues for fusion that are strongly dependent on
the specific coolant and materials in the design.

• Early in the program, simple adiabatic heat-up calculations and
engineering judgement drove selection of optimal coolant and
materials and evaluation of worst case accidents
– For example, in ARIES-II --> complete LOCA of Li/V blanket

with unlimited air ingress.  Flame temperature from
experiments of 1200°C  + 100°C for decay heat.
Temperature of 1300°C used for source term calculations

• Passive removal of such energy is an important way to
demonstrate the safety advantages of fusion.



• We cannot evaluate whether a material is good or bad from a decay heat
or chemical reactivity standpoint unless we understand the behavior of the
in-vessel system (coolant, structures, design specifics) under off-normal
conditions.

• Decay heat removal and chemical energy control are more of a system
design issue, of which materials is only one facet.

• Metrics based on simple decay heat calculations or chemical reaction
energies can be misleading.

• The evaluation of a material is best done in the context of a design and is
best resolved by safety analysis that use actual kinetic data for reaction
rates and actual design information for relevant heat transfer.

• Sometimes only modest design detail is needed for such assessments and
design/safety iteration can improve the situation a lot.

Decay heat and chemical reactivity
evaluations



Decay Heat Comparisons
(1 MW/m2 for 1 yr -- 1 MWyr/m2)
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Passive decay heat removal during a LOCA is important to demonstrate the
safety and environmental potential of fusion

Blanket/shield design is critical to accomplishing this goal
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In ITER-EDA, decay heat is removed by passive means. Peak
temperatures are always below 500°C.
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Chemical Reactivity of PFCs

0.0001

0.001

0.01

0.1

1

10

100

1000

4 8 12 16

Inverse Temperature (1/K) x 1E4

H
yd

ro
ge

n 
G

en
er

at
io

n 
R

at
e 

(li
te

rs
/m

2-
s) Porous Be

(88% TD)
Dense Be

Graphite
NOL N3M
Tungsten

-100

0

100

200

300

400

500

600

700

Chemical Energy
(GJ/m*3)

H2 Release
(kg/m*3)

Be C W



Breeder
Safety
Issues

Chemical Reactivity

0.1

1

10

100

1000

Chemical
Energy -Water

(GJ/m*3)

H2 Release
(kg/m*3)

Chemical
Energy - Air

(GJ/m*3)

LiPb Li
Be



Be-steam chemical reactivity of a number of physical forms of Be indicate
that reaction rates are a strong function of physical surface area
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Radiological Source Term
• Key component of fusion safety case
• In early days, inventory based release metrics were used.
• Although conceptually simple, these can be misleading in the

context of a real design
• Now different components of the radiological source term are

considered
– Activated corrosion products
– Tokamak dust
– Oxidation driven mobilization (via air or steam reactions)

• Also holdup by confinement barriers in the facility during
transport is now considered explicitly



Inventory Based Activation Hazard
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Dust Characterization Activities
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Dust Data from Existing Tokamaks and Plasma Gun Experiments
Were Used to Characterize ITER Dust Source Term
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Allowable Release for Oxidation Driven Activation
Product Mobilization

(no credit for confinement)
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Measurements of
tungsten
mobilization in
steam down to 400°C
results in low site
boundary doses.

Modeling helped
confirm our
understanding of the
mobilization process
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Activation Product Mobilization and Transport

• Oxidation driven mobilization experiments on
fusion materials (e.g , V. FS, SS, Cu, W, Nb,
Mo, Ta) under air ingress

• Modeling of results
• Oxidation driven mobilization experiments on

irradiated SiC (future)
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Early Estimates of Tritium Inventory and
Mobilization for PFCs
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1 µm

Implantation zone: ions are trapped in
small bubbles and defects.  Most of
them recycle quickly to the surface.

Damage zone: traps are more numerous
in this region than in the bulk beryllium.
Cavities and channels built by diffusion
and agglomeration of damage produced
by the ions in the implantation zone.

Saturation of hydrogen isotopes at the
surface limits the driving potential for
diffusion to a low value related to the yield
strength of the beryllium, the implantation
depth, and the diffusivity of hydrogen
in the implantation-zone beryllium.
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Safety Analysis
• Early safety evaluations of fusion design concepts focused on the importance of

the selection of materials and coolant in minimizing the hazards of fusion

• In early studies, safety analysis tools were not very refined which often resulted
in overly conservative safety analyses and safety-important design details were
not available to incorporate into the safety assessment

• In the mid-80’s and early 90’s component level analysis was performed (blanket
loss of coolant or loss of flow) but no integrated system-level analysis.

• Safety requirements got a  stricter --> we needed to really sharpen the pencil.

• Existing fission state of the art systems safety codes were upgraded to deal
with fusion specific issues (e.g., cryogenic conditions, chemical reactivity of
fusion specific materials).

• These tools provided the first self-consistent analysis to understand the
integrated behavior of a tokamak under accident conditions and allowed us to
demonstrate that fusion designs could meet the no-evacuation objective
(1 rem).



Fusion Safety Computer Codes

• MELCOR code developed by
Sandia National Laboratory to
analyses severe accidents in
fission reactors

• MELCOR tracks the flow of
two-phase water during these
accidents as well as any
aerosols that may exist in the
phases

• The temperatures of heat
structures is calculated from
one-dimensional heat
conduction equations

Air
atmosphere

Fog/vapor

Liquid Pool

Conservation of
mass, momentum
and energy for
both liquid and
vapor phases
inside of or
flowing between
volumes

Heat transfer to
structures by
single phase
convection, pool
boiling, thermal
radiation and
condensation

Considers non-condensible
gas effects

Flow between volumes
considers friction, form
losses, and choking

Aerosol models
consider agglomeration,
steam condensation,
gravity settling and other
deposition mechanisms

Leak
Filtered
Dryed

Considers
Leakage
from
Volumes

Models exist for
suppression pools,
heat exchangers,
valves, pumps, etc.

• Heat transfer to both phases is
considered.  External (walls) or internal
(pipes) cooling configurations considered
during force/natural/boiling/condensation
heat transfer modes

• Modifications have been made to
MELCOR for fusion specific analyses



ARIES-AT LOVA Results

180 g of tritium
and 10 kg of
dust is
mobilized

0.08 g of
tritium and
0.04 g of
dust is
released

Pressure and Flowrates calculated by MELCOR
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In-vessel Shield LOCA for
ARIES-AT with and without

suppression system

Pressure in Plasma 
Chamber as a function of 

break size in the shield
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ARIES-AT Ex-Vessel LOCA
• An ex-vessel LOCA into the functional area below

the maintenance corridor was analyzed.

• The MELCOR model included all of the in-vessel
fluid components, plus the ring header and the
primary cooling system.  MHD pressure drop was
included in the calculation.

• The total spill was about 150 m3 from one of four
loops. Pool surface area is 525 m2 and pool depth
is 0.24 m. Pool cools by transferring heat to floor.
No drain tank in the analysis.

• The ventilation system provides one volume
exchange per hour, which exhausts directly to the
stack.  The  leak rate is 1 volume per day at an
over pressure of 400 Pa.

• About 500 Ci of Po-210 and
250,000 Ci of Hg-203 are
available for release
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Mobilization of Po-210 and Hg-203 from LiPb pool
• Diffusional fractional release from the pool is

given by:

• Where L is the pool depth and D is given by:

D(cm2/s) = 8.2E-10 [1 + (3Va/Vm)2/3] T/ [µ(Vm)1/3]

• Vaporization off of the surface for Po-210 is

given by:

J (Ci/cm2-hr)= 2.75 x 10-5 Psat(T) (1000/T)0.5

• Mobilization is given by the minimum of

these two rates for Po-210.  Complete

vaporization of Hg is assumed since pool is

above boiling point of Hg
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Schematic MELCOR Model of ITER
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Base Case Analysis

In case of on-going plasma burn
temperature increase in affected
components.

– failure of in-vessel components at
elevated temperatures

– ingress of steam into VV
– Be/steam chemical reactions

– hazard of hydrogen formation
– Bypass primary confinement

barrier

=> plasma burn will be terminated by
fusion shutdown system

In worst case, if shutdown system fails,
inherent passive shutdown of the
plasma at 1150°C due to Be
evaporation limits hydrogen
production in an ex-vessel LOCA to
below the deflagration limit (10 kg in
VV)

Ex-Vessel Loss of Coolant without Fusion Power Shutdown in
ITER EDA



Unmitigated TF Quench
Model Capabilities and Benchmark

• Conduction - copper stabilizer, glass epoxy
insulation, radial plates, and coil case

• Arcing, displaced currents, resistive heating,
and material melting

• Helium convection and fluid flow

•Turn to turn heat flow benchmarks against other
ITER models

Model Results
• Current decay by 300 s, with 98% resistive
heating, 2% arc heating

• ~ 4 m3 of melt at 1000 s.  Case meltthrough at
7000 s.

• Radiological consequences bounded by VV
LOCA with 1 m2 hole in both VV and cryostat.
Operation of VV pressure suppression system
and cryopumping of magnets limits releases well
below no-evacuation criterion



Environmental Considerations
• Early in the program, the concept of biological hazard potential was

used to evaluate long term hazard of fusion wastes
• 10CFR61 delineated the requirements for low level waste requirements
• Fusion expanded the list of fission isotopes to include fusion isotopes.
• Requiring that all waste from fusion meet low level waste requirements

has been a hallmark of the ARIES program
• Comparison of waste from fusion and other energy technologies were

developed
• More recently with the difficulty of disposing of anything radioactive, we

have been examining
– Recycling (both remote and hands-on) potential of fusion materials
– Clearance of very low level radioactive material
– Volume of fusion waste versus hazard
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Comparison of the Hazards of Fusion With Those From Fission and Coal Based
on Radioactive Inventories in Fusion, Fission and Coal (e.g., Ra, U, Th, Po).

From “A Study of the Environmental Impact of Fusion” (AERE R 13708, 1990)

Comparison of Waste Hazards
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Comparison of Waste Masses and Volumes
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Summary
• Over the past 25 to 30 years, safety and environmental issues have

played an ever increasing role in fusion power plant design
• As fusion power plant designs have matured, safety requirements

have gotten more stringent.
• Materials selection, while important to minimizing the hazard from

fusion facilities, was not enough to meet today’s more stringent safety
requirements

• Better safety/design integration, improved safety analysis tools, more
complete safety analyses, and focused R&D are also needed along
with materials selection to help demonstrate  the safety and
environmental potential of fusion


