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Outline:

• Micromechanics based life prediction
– Single mechanism models
– Multiple mechanism models

• Phenomenological (residual strength) based life
prediction

• Multi-level modeling
• Structural analysis (finite element integration)



Example of Single Mechanism Model:

Assume that crack growth is the mechanism for fiber
failure at elevated temperatures.

Crack growth is dictated by the Paris Law
da
dt

AK K Y t a= =β σ, b g
So with time the strength of an
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Single Mechanism Results:
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Multiple Mechanism Models:

• Analytic solutions are difficult to obtain
• Simulation approach readily combines multiple

mechanisms
• Example

– slow crack growth
– interfacial asperity creep



Multiple Mechanism Result:
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Remaining Strength Predictions:

• Track remaining strength
during the fatigue process

• Define a scalar failure
function based upon
tensor strength and
stresses; use this failure
function for calculations

• May include the effects of
changing loading
conditions

• May be directly validated
experimentally, unlike
Miner’s rule
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• Track remaining strength
during the fatigue process

• Define a scalar failure
function based upon
tensor strength and
stresses; use this failure
function for calculations

• May include the effects of
changing loading
conditions

• May be directly validated
experimentally, unlike
Miner’s rule

Remaining Strength Predictions:
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• Track remaining strength
during the fatigue process

• Define a scalar failure
function based upon
tensor strength and
stresses; use this failure
function for calculations

• May include the effects of
changing loading
conditions

• May be directly validated
experimentally, unlike
Miner’s rule

Remaining Strength Predictions:
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• Track remaining strength
during the fatigue process

• Define a scalar failure
function based upon
tensor strength and
stresses; use this failure
function for calculations

• May include the effects of
changing loading
conditions

• May be directly validated
experimentally, unlike
Miner’s rule

Miner’s rule

Remaining Strength Predictions:
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Approach for Variable Loading
with Rupture and Fatigue Acting:

• Divide each step of loading into time
increments

• Treat each increment as a stress rupture
problem (constant applied stress and
temperature)

• Reduce residual strength due to time
dependent damage accumulation

• Refine number of intervals until
residual strength converges

• Input next load level
• Check for load reversal.  If load

reversal, increment by 1/2 cycle and
reduce residual strength due to fatigue
damage accumulation



• Begin with matrix stiffness reduction as a function of time and stress
level

• Use a simple stress model (2-D, laminate level) to calculate failure
function as a function of time, stress, and temperature

• Fit stress rupture data
• Use incremental approach previously presented to sum influence of

changing stresses (rupture influence)
• Adaptively refine increments until residual strength converges to some

prescribed tolerance
• Account for cyclical loading by counting reversals and reducing

remaining strength

Implementation:  CCLife Program



Stiffness Reduction Data for Nicalon/
E-SiC 2-D Woven Composite [0/90]2s:
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Stress Rupture Data for Nicalon/
E-SiC 2-D Woven Composite [0/90]2s:
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Stress Rupture Data for Nicalon/
E-SiC 2-D Woven Composite [0/90]2s:
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Fatigue Data for Nicalon/
E-SiC 2-D Woven Composite [0/90]2s:



Interrupted Fatigue Test Results
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σσσσmax = 15 ksi
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Residual Strength Data for Nicalon/
E-SiC 2-D Woven Composite [0/90]2s:



Interrupted Fatigue Test Results
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Residual Strength Data for Nicalon/
E-SiC 2-D Woven Composite [0/90]2s:



Interrupted Fatigue Test Results
R=-1

σσσσmax = 10 ksi

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 10 100 1000 10000 100000 1000000

Fatigue Cycles

N
or

m
al

iz
ed

 R
em

ai
ni

ng
 S

tr
en

gt
h,

 N
or

m
al

iz
ed

 F
ai

lu
re

 F
un

ct
io

n

Normalized Remaining Strength

Normalized Failure Function

Normalized Experimental
Remaining Strength

Residual Strength Data for Nicalon/
E-SiC 2-D Woven Composite [0/90]2s:
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Validation:  Mission loading profile
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Validation:  Mission loading profile
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All results for Nicalon/
E-SiC 2-D Woven Composite [0/90]2s:



Integration with FEA:
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Idea:  Use Micromechanical Model Results
as Input to Residual Strength Model

• Why?
– Micromechanical models (particularly simulations) tend

to be computationally intensive, but they can include
details of material behavior

– Residual strength approaches are normally empirically
based which casts doubts on their applicability for
general conditions



Multiple Mechanism Result:
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Conclusions:

• Micromechanical models, while powerful for
modeling material behavior, are somewhat limited
– Inputs are often difficult to obtain
– Computationally intensive

• Residual strength (and other phenomenological
approaches)
– Simpler to implement
– Details of material behavior are obscured

• Possible means of exploiting strengths of both
approaches has been examined


