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Status report on computational modeling for 
Magnetic Intervention (MI):

•
 

Refinements to the Bell Cusp (A. Robson) have 
been examined using ion orbit calculations:  
–

 
Several options for the ring cusp dump regions have 
been proposed (falls, pools)

•
 

A hydrodynamic analysis of the response of the 
liquid metal (Pb) pool and/or falls has been 
sketched out.
–

 
Several equation-of-state options have been examined 
(QEOS, Soft-Sphere, Van der

 
Waals, etc.).

–
 

1D hydrodynamic code development is underway.
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Bell Cusp Concept (A. Robson): 

•

 

Bertie’s

 

design has two 
magnetic field 
modifications 
compared with the 
original MI cusp 
scheme:
–

 

Greatly increased coil 
currents at/near the 
point cusp to reduce 
the ion phase-space 
acceptance

–

 

An addition coil 
modifying the planar 
ring cusp to form a 
bell cusp

z

This scheme opens up a number of possible ion dump scenarios, including

 
liquid pools, “water”

 

(lead) falls, mists/vapors, etc.
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Helium ion density 
at 20, 40, 60 μs 

times for the 
new 8-coil 

configuration:

•

 

Ion channel width is

 
relatively narrow far

 
outside of the chamber.

•

 

Additional transverse 
spreading likely is due

 
to finite β

 

effects inside

 
of the chamber.

•

 

Small-radius, well-

 
focused ion streams 
are present along the 
point cusps.  
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Bell Cusp Ion Deposition Profiles

•
 

We use the orbit calculations to track in 
time and space the energy striking the 
dump region.

•
 

The time-dependent energy deposited as 
a function of depth is then estimated using 
simple dE/dx

 
ion stopping power functions.

•
 

This gives a “depth-dose”
 

profile that is the 
input to the hydrodynamic response 
model. 
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Escaping ion distribution at one plane in the 
Bell Cusp:

Diagnostic plane recording

 
ion energy escaping the chamber

 
as a function of time.
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Sample Surface Deposition Profiles

Diagnostic plane recording

 
ion energy escaping the chamber

 
as a function of time.
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Time-integrated depth-dose profiles for 
escaping Bell-Cusp ions in Lead: 

For crude energy density at the surface of the liquid, divide these values

 
by your favorite cross-sectional area.  (e.g. 12 m2) 
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Depth-dose profiles in 10 μs groupings:

As expected, maximum deposition

 
occurs in first ~10 microns.

Significant energy is deposited

 
throughout the 80 μs times 
plotted.
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3D views of the same data set on linear space and 
time scales illustrates the exponential time decay.

E (MeV)
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 (M

eV
)

Linear Energy Scale Log10 Energy Scale



11

Material response calculations -
 

ion beam 
deposition into liquid metal pool and/or falls.

•
 

We seek a time-accurate numerical model of the 
response of a liquid metal layer to deposition of an 
intense ion flux (beyond the small-signal approximation).

•
 

The model must address the phase transition at the 
vapor-liquid boundary as well as any shock propagation 
out of the opposite side of the liquid layer (substrate).

•
 

Similar modeling has been carried out for short-duration 
(a few ns) energy pulses including MeV

 
proton beams 

[Rogerson:1985] and x-rays [Zaghloul:2005].

•
 

A. Velikovich has looked at the problem is a shock wave 
launched in 2-mm thick liquid lead propagating to a steel 
substrate [Velikovich:2008].  This analysis indicated that 
there the shock wave would not damage the steel. 
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1D Viscous Lagrangian
 

Hydrodynamic Model:
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Mass Continuity:

Momentum:

Energy:

Displacement:

Here λ

 

is the bulk viscosity, and κ

 

is the thermal conductivity.
We assume these are scalars in the following finite difference formulas.
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Momentum Equation Finite Difference Form:
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Computational Grid:
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Finite difference forms for the displacement, 
mass continuity, and energy equations:
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For the energy equation, we assume EOS data in the form:

Displacement

Mass Continuity

as well as the derivatives 
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The energy equation can be expressed in the following “temperature”

 

form:
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Finite difference form of the energy equation:
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Energy equation solution:
We anticipate solving the energy equation by first “guessing”

 

the values of
Tn+1

 

(simply use the previous time step values) and then evaluate 

∂ε/ ∂T, ∂ε/ ∂ρ, and P at (k+1/2,n+1/2).

The tri-diagonal system is solved for Tn+1, and then iterated until suitable

 convergence is achieved.
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EOS Models:
•

 

There are several choices available to us for EOS models of liquid 
metals:

–

 

QEOS [More:1988]: We are developing our own numerical 
implementation of this model which handles liquid→vapor

 

phase 
transition and hot vapor equilibrium charge-states using the Thomas-

 
Fermi model.

–

 

Soft-Sphere Model [Young:1977]: Liquid→vapor

 

transitions.

 
Used by Zaghloul

 

and Raffray

 

[Zaghloul:2005] for examining response 
of thin liquid (Pb) layer to prompt x-ray burst in an IFE chamber.

–

 

DGSS [Giuliani:2008]: Debye-Gruneisen

 

solid-state model combined 
with the Soft-Sphere model developed by John Giuliani. 

•

 

There are significant discrepancies among the various model 
results. These include the liquid-vapor phase boundary/saturation 
pressure as a function of temperature, the critical temperature,

 
pressure, and volume. These differences should be sorted out to 
give a consistent picture. 



19

Sample EOS model data [Giuliani:2008]

Pressure along denoted isotherms

 
from the DGSS model.

Solid-liquid and liquid-vapor co-existence

 
curves for lead in the (ρ,T) plane from

 
the DGSS model along with the corresponding

 
phase states (red).  Liquid-vapor co-existence

 
curves from the QEOS model (green).
(Note the large QEOS/DGSS discrepancy

 
in the co-existence curves.)

Horizontal lines indicate liquid-

 
vapor phase co-existence region
(from Maxwell construction).
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Caveats, issues
•

 
Radiation transport –

 
must be considered as well as part 

of the overall analysis.

•
 

Response of the substrate for the case of a thin-liquid 
layer –

 
can a shock induced by the ion deposition 

fatigue/damage the substrate? (The Velikovich analysis 
indicates that it will not be an issue.)

•
 

All hydrodynamic calculations should be carried out for a 
range of input energy-densities to account for 
uncertainties in expected ion escape energies and 
channel widths.
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Summary:
•

 
We are beginning a study of the hydrodynamic response 
of a liquid metal layer to an intense ion energy pulse.

•
 

We have mapped out a finite-difference scheme for 
solution of the 1D viscous Lagrangian

 
hydrodynamic 

equations including boundary conditions to model both 
the liquid-vapor transition and the liquid-wall interface.

•
 

We are examining several EOS models applicable to 
liquid metals (e.g. lead).

•
 

The ion energy pulse has been characterized as a 
depth-dose profile using orbit calculations of the Bell 
Cusp geometry. 
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