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The Mercury laser is an important step from the 
NIF to a 10 Hz, high energy laser driver for 
Inertial Fusion Energy (IFE)

100J IR
10 Hz

1-3 MJ Green/UV
10-20 Hz

IFE Beamlet

IFE Demo

Mercury

IFE Plant

10 kJ IR
10 Hz

1-3 MJ Green/UV
10-20 Hz

The National Ignition Facility
4.2 MJ IR

10-4 Hz
TODAY!



09/15/08 Bayramian 3

The Mercury system is a high average power, gas 
cooled diode pumped solid-state laser

Mercury has currently produced over 300,000 shots at an 
energy of greater than 50J at 10Hz with 0.5 - 2 hour run times 

Diode Arrays

Gas cooled amplifier
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The Mercury laser employs many advanced 
technologies to achieve scalable, efficient, 
high-average-power operation

Chamber
(TBD)• These component technologies are “first-of-a-kind”

• Scaling and engineering are still required for 
implementation in IFE

Diode 
Arrays

Gain 
Media

Gas 
Cooling

Front End

Frequency 
Conversion

Pockels Cell Adaptive Optic

Final Optic
(TBD)



Diode Development
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The Mercury diode arrays demonstrated 
performance consistent with IFE requirements

> 1.4 x 108> 2 x 108Reliability (shots)
@ > 100 W/bar

3 x 106> 1 x 106System shots (8, 100-kW 
arrays @ 10 Hz)

45 %*> 50 %Wallplug efficiency, η
15 x 140< 18 x 180Divergence (mrad2)

Integrated linewidth (nm)
Linewidth (nm)
Power droop (1 msec)

Power (W/bar)

Diode tile attributes

4.1< 8.5
2.3< 5

4.3 %< 15 %

120> 100

Demonstrated
PerformanceGoal

Improvements in the areas of power, reliability, and wallplug efficiency 
will reduce the system cost and provide an attractive power source

* Limited by 2002 diode bar material, current diode bars η > 60%
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Diode requirements for a single IFE demonstration 
reactor could easily drive costs to < $0.01/Watt

100.00

10.00

1.00

.10

.01

Pr
ic

e 
($

/W
)

10K 100K 1M 10M 100M
Cumulative # of bars

2.5¢ estimate for mass 
production high yield 

manufacturing of 50M diodes

.72¢ estimate for VCSELs for mass 
production high yield manufacturing 
of equivalent of 28M Bars

Cost Study for Diodes from Industry at High Yields

60% learning curve

2ω IFE Demo 
1 MJ, 15 GW

2ω IFE 
Prototype

New learning curve expected for 
wafer-scale production of VCSELs



Front End Development
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We have built a stable and reliable front end laser 
that addresses our pulse requirements

550≥ 500Energy (mJ)

1,000,000:1≥ 10000:1Signal to noise (ASE)

Spectral

Temporal

Energy

150:1≥ 80:1Shaping contrast

240≥ 240Bandwidth (GHz)

2.2≤ 5Intensity fluctuations (%)

260≤ 300Jitter (ps)

300:1≥ 100:1Amplitude and phase shaping

0.08≤ 3Stability (GHz)

0.78≤ 1RMS Stability (%)

StatusGoalLaser Performance

Our control system allows the laser to be run with minimal user intervention
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Temporal shaping example

An arbitrary waveform generator provides 
shaped seed pulses
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Active temporal waveform control allows for correction of square pulse distortion

Temporal shaping:

• Dual stage electro-optic modulator
• 96 temporal adjustments across 24 ns
• 250 ps resolution
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Streak camera images of the center of a 
10nsec,150GHz pulse.  The top image 
shows the amplitude fluctuations caused by 
FM-AM conversion.  The bottom image has 
a spectral correction applied

We shape the bandwidth to pre-compensate for 
non-uniform spectral gain through the system

A Gaussian notch has been applied 
to the center of the spectrum

-100 -50 0 50 100
0.0

0.5

1.0

1.5
 Maskoff
 Maskon

 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Frequency (GHz)

t=4ns                               5                           6

Reduction of FM-AM conversionSpectral shaping example
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The Advanced Front End laser is now 
operational in the Mercury laser laboratory
and has operated with over 6 million laser shots



Gas Cooling Development
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Gas-cooling

Face cooling with helium gas offers 
low scattering losses and thermal distortions

Scattered light: ∆n2 ≈ (G ∆ρ/ρ)2

n = gas index
ρ = gas density
G = Gladstone-Dale coefficient

=  0.36 x 104 Helium
=  2.97 x 104 Nitrogen (7.4x larger)
=  2.92 x 104 Air (7.4x larger)

Helium scattering 66X lower than air!
Turbulent flow in channels
with Reynolds number of 6400

Transversely cooled rod laser Longitudinally cooled rod laser
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The thermally induced wavefront distortion 
has been experimentally benchmarked to a 
detailed thermal model

7 amplifier
slabs

Helium

Pump

Pump

Mach 0.1 helium gas cooling

Experimental Data

1.0 λ

0.5

0

Thermal Model

1.0 λ

0.5

0

The sub-sonic helium gas cooling 
technology is now qualified 

for IFE application 



Frequency Conversion



Frequency conversion efficiency > 70% demonstrated on 
Mercury using YCOB, a thermally insensitive nonlinear material

Finished Mercury frequency converters Crystal Photonics, Inc.



Adaptive Optics Development
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The deformable mirror is a bimorph design 
which utilizes lithographically defined actuators 
to shape the mirror surface

Night N Opt Ltd.

Deformable mirror The mirror has a “woofer-tweeter” design for 
optimum dynamic range.

“Power”
or spherical
correction
(woofer) 

High order
correctors
(tweeter) 

This qualified mirror technology 
can be mass produced at a low 
cost making it attractive for an 
IFE application

20Maximum stroke (woofer) (waves)
45 x 75Active aperture (mm2)

6.0Maximum Stroke (tweeter) (waves)

Test 
resultAdaptive Optic

10.0Damage Threshold (J/cm2 @ 3.5 ns)
0.9Flatness (waves)



Pockels Cell Development
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The 200 W Pockels cell developed for parasitic 
suppression in Mercury was awarded an R&D 
100 Award

0.2λ

-0.2λ

Pockels cell performance:
• Wavefront distortion: 0.15λ 
• Average contrast:  200:1 
• Rise time: 11 ns
• low EMI 

3.5x6 cm2 

99% KD*P

Unwanted back
reflection switched
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on on

off off

unwanted
parasitic

main
beam

Main beam is
unaltered

•

• •90° +λ/4+λ/4

90° +ϕ–ϕ

How thermal birefringence compensation works

Transmitted wavefront 
distortion of the cell is low
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High average power Plasma Electrode Pockels 
Cell (PEPC) and Transverse Electrode Pockels 
Cell (TEPC) concepts

Transverse Electrode Birefringence
Compensated Pockels Cell
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Laser Beam

Sapphire cooled PEPC

Based on technologies developed on NIF and Mercury, 
an IFE scale Pockels cell is being designed



Integration
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The front end controls provide automation, 
performance management, alignment, and 
diagnostic capability

Automation
• Startup and shutdown
• File-driven configurations
• Automated alignment

Performance management
• Closed loop energy, wavelength, and temporal pulse stabilization

Diagnostics and trending
• Multiple channels of power, energy, spectra, and operating parameters 

archived for long term trending. 
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Mercury has operated above 50 Joules for over 
0.3 million shots at 10 shots per second

Mercury shot histogram of consecutive 0.5 - 2 hr operations
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The Mercury laser employs many advanced 
technologies to achieve scalable, efficient, 
high-average-power operation

First Wall
Test

(TBD)

• Poster  “High Average Power Petawatt Laser 
Pumped by the Mercury Laser for Fusion Materials 
Engineering” on Tuesday
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Front End
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Pockels Cell Adaptive Optic

Final Optic
(TBD)
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