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Motivation

A key technical and economic consideration in the design of the
prospective direct drive inertial fusion energy (IFE) reactor is the
determination of a suitable mechanism for tritium ( fuel ) breeding. A
review is undertaken to determine the optimal breeding material,
examining two candidate compounds: 83Pb-17Li and (LiF)2BeF2
(FLiBe). In this review, the compounds are evaluated based on
chemical and physical properties, structural requirements, feasibility,
hazards, and costs of application. Preliminary results seemed to indicate
that FLiBe may be the more practical option, due to its mechanical
utility and the relative projected efficacy of blanket design. However,
much remains to be investigated, particularly the properties of breeder
and structural materials in the specific conditions of a reactor. This
evaluation process will require further theoretical modeling as well as
practical trial, currently planned in other progenitor reactor designs.
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- Target Chamber Mechanical Pumping System.
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- Balance of Plant Systems.
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- Magnetic Intervention Concept.
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Motivation for Tritium Breeding

 IFE target contains ~ mg quantities of T. Targets
expended at a rate of 5Hz. ~ 72% is not used in
reaction, and can be recovered through the Fuel
Recovery system. Need to breed T to make up
expended T.

 Deuterium is readily available from natural water
 Tritium is costly (at about $40 -$120/mg) to

produce, and decays relatively quick.
 To make commercial power production feasible,

the IFE reactor must incorporate a reliable
mechanism for producing T.



Basic Mechanism

 T breeding will most likely use a liquid breeder
blanket: a module facing the first wall.

 Inside, liquid alloy at high temperatures is
circulated. Neutrons that pass through the first wall
react with this alloy to produce T.

 Other reactions can multiply incoming neutrons so
that the breeding ratio is greater than 1.

 Target breeding ratio needs to be about 1.2 at any
local point, so that the overall breeding ratio is about
1.1 (Taking into account losses through permeation
and dissolving).
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Orientation of Blanket in Chamber



Chemical Process
 Lithium is the most viable reactant for

breeding:
 6Li + n  4He + 3H +4.8 MeV
 7Li + nfast  4He + 3H + nslow



Candidate materials
 Pure lithium is difficult to implement because it is

highly reactive with water and oxygen. Some Li-
containing compounds will probably not be used for
reasons of feasibility, such as Li2O, Li4SiO4, Li2TiO3,
Li2ZrO3

 The most promising alloys for use in a blanket
systems appear to be 83Pb - 17Li and FLiBe (2LiF -
BeF2). These materials breed tritium efficiently and
do not yield long-term radioactive species.

 These materials vary considerably in their chemical
and physical properties as well as different factors
that may affect feasibility.



Chemical Properties

•Be acts as neutron multiplier
9Be + 1n   2 1n + 2 4He
•Li reaction liberates FTF
•RedOx agent is required to control
free fluorine
•RedOx reaction:
 xM + F2 = xMF2/x
•In laboratory-scale experiments, Be
was 90% effective
•Breeding ratio: 1.27 (no multiplier)
•Dominant H-bearing species; TF;
[T2] low.
•Low T solubility  permeation

•Pb acts as neutron multiplier (n, 2n)
•Transmutation reaction yields Po-
•With enriched Li, breeding ratio:
1.06 (SiC structure) - 1.16 (Steel
structure)
•Sievert’s constant for T
temperature-independent;
experimentally about 5.1± 1.1
appm/torr1/2.
•Higher T solubility  higher T
inventory
•Negative free energy of reaction
with SiC

FLiBe (2LiF - BeF2)83Pb - 17Li



Physical Properties

•Melting Temperature: 742 K
•Much lower surface tension
•Dynamic viscosity higher by order
of magnitude
•Slightly higher vapor pressure
•Temperature range : 473 – 973
K; avg. 6 K
•Average liquid density: 1992
kg/m3

•Liquid specific weight: 19541.52
kN/m3

•Specific heat: constant at 2380
J/kg-K

•Melting temperature: 507 K
•Higher thermal conductivity,
lower electrical resistivity
•Temperature range: 673-973 K
•Average liquid density: 8800
kg/m3

•Liquid specific weight: 93195
kN/m3

•Specific heat: 195 - 9.116 * 10-3

*T (little change over
temperature range)

FLiBe (2LiF - BeF2)83Pb - 17Li



Structural Requirements

• Assume 130.6 m3 required
•Total mass: 260,155.2 kg
•SiC components
•Be pebbles may need to be
used for neutron
multiplication
•Additional Be needed to
control fluor produced in T
breeding
•Flow rate: 6.3 * 106g/s

• Assume 130.6 m3

required
•Total mass: 1,240,700
kg
•Pumping system
•Flow rate: 8.0 *107g/s
•SiC components

FLiBe (2LiF - BeF2)83Pb - 17Li



Hazards

•Contains F, Be, as well as
other volatile species such
as tritium fluoride (after
reaction)
•Potential for overbreeding
•Corrosion
•High temperature

•Produces radioactive Po-
210 (half-life 138.39 days)
through Bi-209 content
•Creates Pb-Po
compounds
•Corrosion
•High tritium pressure
•Large lead inventory
presents hazard

FLiBe (2LiF - BeF2)83Pb - 17Li



Cost

•$45.76 / kg [1994 price
adjusted for inflation]
•For 130.6 m3, cost of
FLiBe: $11,904,702.00
•A similar design projects
use of one FLiBe blanket
for ~ 15-30 years
•Costs of transportation
and insulation may be
significant

•$16.92 / kg [1992 price
adjusted for inflation]
•For 130.6 m3, cost of
PbLi: $19,445,818.00
•If two blanket layers are
used, the outer layer will
need to be replaced every
~ 5 years; inner layer
functional much longer

FLiBe (2LiF - BeF2)83Pb - 17Li



Other Considerations

• US standards for Be
storage recently tightened

FLiBe (2LiF - BeF2)83Pb - 17Li



Need for Further Research

•Kinetics of RedOx reaction in
reactor conditions - fast
enough to contain free
fluoride?
•Compatibility with SiC
structural materials
•Tritium extraction Processes
•MHD effect
•Use of flow channel inserts
to eliminate magnetic field
influence

•Compatibility with SiC
structural materials
•Tritium Extraction
Processes
•MHD effect
•Use of flow channel
inserts to eliminate
magnetic field influence

FLiBe (2LiF - BeF2)83Pb - 17Li



Conclusions
 FLiBe is a more effective breeding material and is

appears to be more economical; however, it has
hazardous components despite RedOx
possibilities, is viscous, and may result in
overbreeding.

 PbLi has been studied more thoroughly, is less
corrosive and contains fewer volatile species;
however, it is less efficient, more costly, and
mechanically cumbersome.

 Pending further research, FLiBe may be
preferred material for the IFE reactor.
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