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MercuryMercury

IFE

ETF

Mercury is the first step toward a 10 Hz class of IFE lasers 

Mercury Goals

100J IR

20kJ UV

2MJ UV

5 xDLBeam quality
>150 GHz 1ωBandwidth
0.53/0.35 µmWavelength
3-10 nsPulse length
10 HzRepetition rate
10 %Efficiency*
100 J, 1ωEnergy

IRE (NIF bundle)

Mercury

Status

4 xDL, 80%
Soon
0.53 um
3-15 ns

10 Hz
6.5%, 1ω
65 J, 1ω

*utilities not included



Gas Cooled
Amplifier with

Crystalline Slabs

The  Mercury Laser

Pockels cell

Output telescope

System controls
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The Mercury Laser technologies

Diode pump arrays Solid-state amplifier Helium gas cooling

Broadband Front EndFrequency Converter Adaptive Optic
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New diode technology demonstrates enhanced reliability, 
efficiency, and lower cost per Watt
325W from ‘Superbar’ exceeds 300W goal ‘Superbar’ lifetime near 1010 shot goal
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IFE Goal

59% learning curve

New price point falls in the learning curve

Kanskar, M. et. al. “73% CW power conversion efficiency at 50W from 
970 nm diode laser bars”, Elec. Lett., 41(5) 2005.
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Commercial Yb:S-FAP growth efforts are currently focused on 
scaling to kJ apertures

Diode pump arrays Solid-state amplifier Helium gas cooling

Broadband Front EndFrequency Converter Adaptive Optic
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• 23 spare slabs are now in commercial production
• First 10 cm diameter growth in early CY2006
• 10 cm diameter boules can produce 10 x 15 cm single crystal apertures or 

bonded 20 x 30 cm apertures capable of 1 - 4 kJ

Successful growth of  Mercury-scale boules will lead to kJ-scale 
boules in 2006

Northrop Grumman
Czochralski growth station 

Boules grown in FY05 which yielded slabs
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Polishing (June 2005) Polishing (October 2005)Polishing (June 2005)Polishing (June 2005) Polishing (October 2005)Polishing (October 2005)
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Optical quality of S-FAP has improved through reduction of grain 
boundaries, improved polishing, and magneto-rheological finishing

200-500
µrad 

pinholes

Improvement in 
focusability due to MRF

Decreased scattering 
and pinhole loading 
due to reduction in 
grain boundaries

NIF specification

Improved polishing technique increases the laser damage threshold
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Optical quality of S-FAP has improved through reduction of grain 
boundaries, improved polishing, and magneto-rheological finishing

Polishing (June 2005) Polishing (October 2005)
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Far field analysis indicates that we will meet the 
< 5X diffraction limited goal

Near field
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Radial integral

Experimental contrast (σ/µ) = 0.44
Improvements will appear in FY06

σFWHM

µ

Far field

Improvements with new slabs and the adaptive optic
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Output beam stability has been measured

Output Near Field Output Far Field
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System upgrades have improved stability 
and reliability for high power operation

Single Shot Energetics
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Temporal Shaping Capability
• Modified multiplexing and U-turn layout 

to reduce fluence on turning mirrors

• Improved shot and diagnostic stability 
through better shielding and electronics

• Automated alignment process for active 
correction of thermal abberations and 
long term drift

System upgrades

* Front end drop outs not shown
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YCOB has generated over 220 W as an average power frequency 
conversion material

Diode pump arrays Solid-state amplifier Helium gas cooling

Broadband Front EndFrequency Converter Adaptive Optic
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We have fabricated three full aperture 
YCOB frequency converter crystals

• Aperture size is 5.5 x 8.5 x 1.1 cm3

• Boules are production growth 
from Crystal Photonics Inc.
• Czochralski growth method is 
scalable to kJ apertures

Frequency
Converter
Module

Down 
collimation 
telescope

Converter 
heatsink in 
enclosure

CW 2ω
damage 
monitor

YCOB Crystal in heatsink



Multi-plate YCOB frequency converter is efficient up to a 
bandwidth of 384 GHz (1ω) meeting SSD requirement

Goal : Determine the largest bandwidth 
and the best phase matching angle for 
two 7.5 mm thick YCOB crystals

Result : Parametric studies give 
∆ν = 384 GHz, θ = 700 µrad

MercuryMercury

YCOB 
slab #1

+θ −θ

YCOB 
slab #2

Multi-plate geometry

Conversion 
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2ω spectrum at 768 GHz
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A temporally, spectrally, and spatially sculpted front end will 
allow efficient laser extraction and coupling to fusion targets

Diode pump arrays Solid-state amplifier Helium gas cooling

Broadband Front EndFrequency Converter Adaptive Optic
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Mercury’s front end design uses fiber technology for a stable and 
robust system meeting NIF (IFE) requirements

Energy stability and beam quality required for reliable ignition pulses 
• 500 +/- 2.5 mJ @ 10 Hz
• 10,000:1 signal to noise
• Beam quality: < 1.5X diffraction limited

Temporal shaping required to compensate for gain saturation and ignition waveforms
• < 5% amplitude fluctuations 
• > 250 ps jitter  
• 20:1 contrast

Spectral bandwidth required for beam smoothing on target
• 3 GHz stability 
• >150 GHz bandwidth
• 100:1 contrast
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Fiber osc S-FAP RingFiber ampTemporal shp RF bandwidth Spectral sculptFiber amp

Fiber 
amplifier

Temporal 
shaper

Fiber 
oscillator

Fiber amplifiers Spectral 
sculptor

Phase 
modulator
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Front end development progress
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Fiber osc S-FAP RingFiber ampTemporal shp RF bandwidth Spectral sculptFiber amp

Mercury Diode tiles

Hollow reflective
Pump delivery duct S-FAP rod in 

cooling block

Relay 
telescope
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Initial ring amplifier data show the small signal gain matching the 
model and successful multipass pulsed amplification
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A new adaptive optic has been installed

Diode pump arrays Solid-state amplifier Helium gas cooling

Broadband Front EndFrequency Converter Adaptive Optic
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Our adaptive optic system passed initial inspection and tests

Adaptive Optic

OK45 x 75 mmActive aperture

OK> 3 waves
Maximum Stroke
(w/o defocus)

Test Spec

3.3 GW/cm2>3 GW/cm2Damage Threshold
0.065 %< 0.2 %Transmission

0.9 waves< 1 wave
Flatness
(w/o Defocus)

Wavefront Sensor

0.050.05Sensitivity (waves)
300x300256x256Resolution

Test 
ResultSpecification

1212Repetition rate (Hz)

0.05-1500.05-150Dynamic Range 
(waves)

Uses a four-wave lateral shearing 
interferometer for high resolution 
and simple alignment
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Closed loop operation
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Iterations

A static phase plate was used to test the adaptive optic

Static phase plate
PV=1.65, RMS=0.402

Flatness of mirror alone
PV=0.15, RMS=0.02

Phase plate correction
PV=0.593, RMS=0.075
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3133ω Conversion crystals
3322ω Conversion crystals

Online CommissionedDMWavefront control

222Amplifiers

2ω/3ω2ω2ω/3ωConversion
250 GHz Offline  >150  Bandwidth (GHz @ 1ω)
3-153-15 3-10 Pulse-shaping (ns)
54 @ 65J (80%)5Beam quality (xDL)
109109108Diode reliability (shots)
106.510Efficiency (%)
10 10 10Rep-rate (Hz)
10065  100Energy (J)

Laser Performance

0.12% 0.12% <1% - Cooling uniformity (rms)

360 360288Diode tiles (120 W/bar)
28 1414Amplifier slabs (4x6 cm)
End FY06PresentGoalComponents

We are successfully meeting our performance goals

Completed On schedule
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The DPSSL approach will begin to develop multi-kJ scale 
components in FY06

Beam Bundling

Coherent Inc.

Optical Switch
DKDP

sapphire

PlasmaPlasma

High Performance Diodes
15 cm Nd:GGG 40 cm CaF2

Northrop Grumman Schott Technologies

Large Scale Growth
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Summary

• Project Overview
- International/National DPSSL Programs are pushing technology envelopes

• System Performance 
- Mercury Laser performance goals are on track

325 W average power at 14 ns for > 103 shots (65 J at 5 Hz)
Beam quality at 80% of energy in a 4X diffraction limited spot 

• Component Performance
- Pump diode arrays (Commercial prototypes meet specs)
- Crystalline gain media (23 spare slabs in queue)
- Gas cooled amplifiers (Thermal wavefront agrees with model)
- Frequency conversion (YCOB advanced material in production, scalable chilled         

plate prototype demonstrated)
- Front end (90% complete)
- Adaptive optics (Mirror Commissioned)

• Next Generation Design Considerations  
- System engineering with statistics in mind
- Out-of-the box thinking to push efficiencies 
- Leveraging NIF engineering
- Leveraging subscale facilities for component development/chamber  

materials/chamber environment
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Collaborators
Coherent
Directed Energy
Laboratory for Laser Energetics
Northrop-Grumman
Onyx Optics
PHASICS
Night N (opt) Ltd.
Crystal Photonics
Quality Thin Films
Schott Glass Technologies
SESO
Spica
Zygo
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Ed Moses
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