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The Mercury Laser is the first step toward building a
MW, 10 Hz class of IFE lasers MercuryMercury
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Many rep-rated solid-state lasers are being developed that 
complement large energy - single shot systems

MercuryMercury
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MercuryMercuryThe Mercury Laser amplifier technologies

These components comprise the essential
building blocks of an amplifier

Diode pump arrays Solid-state amplifier Helium gas cooling
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MercuryMercuryAdvanced beam control technologies

Wavelength Bandwidth Wavefront

Frequency Converter Bulk Modulator Adaptive Optic

Some components are being commissioned 
this year for frequency conversion to 2ω

and improved beam quality
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MercuryMercuryProgress in diode arrays

Commercialization of diode array technology is 
leading to new technological breakthroughs 

Diode pump arrays Solid-state gain media Helium gas cooling
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Mercury Laser diode tiles and arrays have incurred up to >107 

integrated shots with no intrinsic failures MercuryMercury
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MercuryMercuryThe amplifier system is pumped by > 800 kW of peak diode power  
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• A company has just delivered the second batch of diode tiles• A company has just delivered the second batch of diode tiles
• Compliance testing look promising
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MercuryMercuryProgress in gain media fabrication

We have transitioned nearly all the furnaces to 
produce full-size amplifier slabs (4x6 cm2)

Diode pump arrays Solid-state gain media Helium gas cooling
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MercuryMercury

Yb:S-FAP crystalline boules are being produced
with the Czochralski Growth method

6.5 cm

LLNL

We now produce slabs from LLNL and Northrop boules, 
which no longer require high temperature bonding 

Northrop Grumman Boule

18
cm

Poster: K. Schaffers
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There are 20 slabs in fabrication to provide spares and higher 
quality parts

MercuryMercury

2 9 6 4 

Growth Cut/Shape Polish/Shape Assemble

Spare Slabs:
#1
#2

#3-4
#5-6

#18-19

#20

#7-8

#9-17

We are now focused on improving crystalline quality
and growth options that allow IRE scale parts
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Grain boundaries have been reduced in recent 
boules in full diameter section MercuryMercury

• Formed when defect sites 
migrate together to relieve 
thermal stress

Recent boulePrevious growth 

Reduction

Stress induced grain boundaries have been reduced by controlling
the cooling profile of the crystal during growth
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MercuryMercuryProgress in cooling performance

Both helium amplifiers have been characterized for 
beam wavefront and meet expectations

Diode pump arrays Solid-state gain media Helium gas cooling
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The measured wavefront of both amplifiers is
close to thermal modeling in shape and magnitude MercuryMercury

Amp 1
1 wave  

Amp 2
1.17 waves

Amp
1.4 waves  

7 amplifier
slabs

Helium

Pump

Pump

Mach 0.1 helium gas cooling Amplifier Assembly 

Thermal Model - 7 slabs only Experimental Data - includes all optics
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Gas Cooled
Amplifier with

Crystalline Slabs

80 kW 
Diode
Array

The  Mercury Laser

55J at 3.3Hz
for > 5.5 hrs
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Mercury laser operations movie 
of 550 W, at 10 Hz, for several 1 hour runs 

May 20th 2005 
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The Mercury was operated for 55J at 10 Hz for >105 shots
producing 0.55 kW of average power
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MercuryMercuryProgress on wavelength conversion

BandwidthWavelength Wavefront

Using advanced materials such as YCOB, we have 
generated over 200 W in average power output 
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MercuryMercuryExperiments were performed with one plate of YCOB 

Sapphire
plate 

crystal

Water
cooled
copper

heatsink

Within 9 months of R&D, a company
is producing world’s largest YCOB Face cooled 2ω converter hardware
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MercuryMercuryWe have demonstrated first 2ω light at 10 Hz repetition rates

Frequency
Converter
Module

Temporary Side-cooled
ArrangementYCOB 

1.6 x 5.5 x 8.5 cm slab

Zhi Liao and
Chris Ebbers
basking in the
green glow 
of success
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We operated system for >104 shots with YCOB and produced 
22.7 J at 10 Hz or 227 W of average power at 523 nm  MercuryMercury

Average Power 523 nm Efficiency (14 ns) 
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With YCOB we have reached world records in both material apertures 
and high average power performance at 10 Hz rep- rates 

Poster: C. Ebbers and Z. Liao
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MercuryMercuryFront-end laser progress

The advanced front end laser is nearly complete 
with installation scheduled for next year

BandwidthWavelength Wavefront
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The front end design for the Mercury laser is based on fiber
amplifier technology to provide a stable and robust system MercuryMercury
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Specification

Energy stability and beam quality are required for reliability and ignition pulses 
• 500 +/- 2.5 mJ @ 10 Hz
• 10,000:1 signal to noise
• Beam quality: M2 < 1.5

Temporal shaping is required for gain distortion compensation and ignition pulses
• < 5% amplitude fluctuations 
• > 250 ps jitter  
• 20:1 contrast

Spectral Bandwidth is required for beam smoothing on target
• 3 GHz stability 
• >150 GHz bandwidth
• 100:1 contrast

We have demonstrated that the 
fiber-based section of the front end meets 
energy and beam quality requirements

Poster: P. Armstrong
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Fiber osc S-FAP RingFiber ampTemporal shp RF bandwidth Spectral sculptFiber amp

Fiber 
amplifier

Temporal 
shaper

Fiber 
oscillator

Fiber amplifiers

Spectral 
sculptor

Phase 
modulator
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MercuryMercuryWavefront correction progress

• MRF is being regularly used to smooth phase profiles of Yb:S-FAP slabs

• Phase plates are being used to correct low order thermal distortions   

• The adaptive optic has been designed and is in procurement 

BandwidthWavelength Wavefront
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Design

Mercury Laser AWC Specfication
minimal

Physical
Active Aperture [mm] 45x75
Surface Flatness (P-V) [um] 0.1
Surface P-V correction [um] 4.00
Max spatial frequency [1/cm] 0.5

Laser
Wavelength [nm] 1047
Energy [J] 35
Pulse width [ns] 3
Avg. Power @ 10Hz [W] 300
Peak Intensity [GW/cm^2] 2.6
Fluence [J/cm^2] 1.04

 
Controls
Resolution [points] 128 x 128
Rep. Rate [Hz] 3
close loop operation yes
sensitivity [waves] 0.05
dyanmic range [waves] 0.01 -10

MercuryMercury

Recent tests on wavefront control substrates indicate that
average power specifications will be met

Location SpecificationsAmp

Active
wavefront
control

Prototype
Hardware

Z. Liao
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MercuryMercury
We are successively meeting our performance goals

Offline demoOn orderDMWavefront control
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MercuryMercury
Summary

• Project Overview
- International/National DPSSL Programs are pushing technology envelopes

• System Performance 
- Mercury Laser performance goals are on track

1ω:  550 W average power at 14 ns for > 105 shots (55 J at 10 Hz)
2ω:  227 W average power at 14 ns for > 104 shots (22 J at 10 Hz) 

• Component Performance
- Pump diode arrays (Commercial prototypes meet specs)
- Crystalline gain media (20 spare slabs in queue)
- Gas cooled amplifiers (Thermal wavefront agrees with model)
- Front end (System 80% complete)
- Adaptive optics (Commercial vendor engaged)

• Next Generation Design Considerations (R. Beach) 
- System engineering with statistics in mind
- Out-of-the box thinking to push efficiencies 
- Leveraging NIF engineering
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