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Progress on Three Modeling Issues

• Threat spectra target source computed by BUCKY.
Fluid approximation not valid (TOFE ’04).
Hybrid fluid-kinetic approximation.

• Ion threat time of flight transport to first wall and 
deposition in wall computed by BUCKY.

Temporal prediction of ion threat at the first surface in 
BUCKY improved (piece-wise continuous model replaces 
discrete model.)  Model verified.

• Chamber—first wall integrated calculation computed by 
BUCKY.

Replace two region model with integrated e.o.s. and 
conductivity models. Modifications completed.
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For the Examination of Long Mean Free Path Effects,
the Time Near Ignition Will Be the Focus
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Lagrangian constant-mass zones from BUCKY run of HAPL case
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DT Core, DT-CH Shock, and CH-Au Shock
Will Exemplify the Issues
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• Each point represents a Lagrangian zone 
of constant mass.
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At 34.592 ns, the DT-CH Shock Thickness and
Incoming Ion Mean Free Paths Become Comparable
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By 30 ps after Ignition, DT-CH Shock Wave
Is Ineffective at Transferring Energy

• Ignition begins at ~34.56 ns.
• Mean-free path calculations include

ion-ion collisions and ion-electron drag.
• ∆shock / mfp ratio quickly falls.
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Implications for HAPL Ions

• Hydrodynamic assumption of perfect momentum transfer 
between Lagrangian zones fails after ~25 ps. 

• By ~40 ps after ignition, ions in the shock wave are free 
streaming.

• Energy spectrum of ions hitting the first wall will be of 
lower energy than estimated by purely hydrodynamic 
codes.

Effect is being evaluated using the Icarus (SNL) 
Discrete Simulation Monte Carlo (DSMC) computer 
code.
UW 1-D radiation hydrodynamics code, BUCKY, will 
be modified to predict the HAPL ion energy spectrum.
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UW is Simulating Target Explosions Using the 
Icarus Direct Simulation Monte Carlo (DSMC) Code
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• Code written by Dr. Tim Bartel, SNL.

Icarus mesh for the 
HAPL problem.
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Ion threat time of flight transport to first wall 
and deposition in wall computed by BUCKY.

• Temporal prediction of ion threat at the first surface  
improved (piece-wise continuous model replaces 
discrete model.)

BUCKY results reproduced in “stand-alone” simulation 
and compared to new model.
Further testing and comparisons.
Implementation in BUCKY with verification and 
validation.
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Select a portion of the HAPL ion spectrum 
to simulate using new model
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Discrete ion spectrum

0 s 0.3 microsec
First wall

6.5 m

Initial ion distribution < 0.5 cm

Outermost ions have highest 
velocities. Time-of-flight spreading 
widens pulse length at first wall.
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Discrete ion spectrum(2)
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Discrete ion spectrum(3)
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Continuous ion spectrum
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Continuous ion spectrum(2)
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Continuous ion spectrum(3)
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Surface temperature vs. time for discrete and 
piece-wise continuous ion spectrums
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Chamber and first wall integrated 
calculation computed by BUCKY.

Radiation hydrodynamics, 
plasma properties

Heat conduction, 
solid state properties.

Two different models 
communicate across 
boundary.

Replace two region model with single region model with 
integrated equation of state and conductivity for plasma 
and solid state materials.
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Future work in threat spectra task

• Perform DSMC analysis of long mean-free path ions 
and modify hydrodynamic model.

• Verify and validate BUCKY for new models.

• Continue with improved simulations for HAPL reactor 
design.

• Continue to interface with wall response simulations 
and cavity clearing simulations.
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