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Mercury laser requirements are a melding
of both NIF and IFE systems but at sub-scales MercuryMercury

• Efficiency: 10%
• Reliability: >109 shots
• Cost: $500/J for laser, $0.05/W for diodes
• Repetition rate: 5-10 Hz 

• Energy: 1.8 MJ
• Pulse shape: 3 ns shaped
• Bandwidth: 90 GHz; 1ω
• Wavelength: 0.35 µm

• Energy: 100 J
• Pulse shape: 3 -10 ns
• Bandwidth: 150 GHz; 1ω
• Wavelength: 0.5-0.35 µm

• Efficiency: 10 % (w/o utilities)
• Reliability: >108 diode shots
• Cost: $5/W for diodes
• Repetition rate: 10 Hz 

Mercury Laser incorporates:

Diodes, crystals, and gas cooling
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Many different architectural approaches
are being considered for rep-rated 100J systems

Polaris - Germany
Dr. Joachim Hein

Water cooled, longitudinal pumped
Yb:Flurophosphate disk

HALNA - Japan
Dr. Yasukazu Izawa 

Water cooled, side pumped
Nd:Phosphate slab

Lucia - France
Dr. Jean-Christophe Chanteloup

Water cooled, longitudinal pumped
Yb:YAG disk



Summary table of performance goals for high energy
1 µm DPSSL efforts around the world MercuryMercury
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The Mercury Laser employs several key technologies
MercuryMercury

80 kW pump
diode arrays

Mach 0.1 helium
gas cooling

4x6 cm2 Yb:S-FAP
amplifier slabs

Architecture:
closely-spaced
amplifier slabs

Diodes

Gas cooled 
amplifier
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Architecture, optical specifications, and nonlinear propagation 
are addressed 
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MercuryMercury

There are several ways to reduce nonlinear growth of
beam modulation 

Solutions:
• Relay the location of near- field planes
• Filter fast growing spatial frequencies

Amplitude afterSpatial filterAmplitude before

• Compact the optics near relay planes 
• Minimize source terms through optical specifications

Diodes

Gas cooled 
amplifier



Spatial frequencies convert from phase to amplitude at different
propagation distances MercuryMercury

Amplitude
Modulation

Propagation

=                    Phase aberration
frequency

decomposition

+ +

DC

When propagating, the highest frequency phase aberrations
are the first to appear as amplitude modulation

Cycling of phase to
amplitude modulation 

on beam

Amplitude modulationPhase to

Phase-to-Amplitude modulation

…..

…..
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Optical specifications can drive:
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The closely space architecture reduces beam intensity 
on pinholes and optics MercuryMercury

Widely spaced architectureClosely spaced architecture

Relay
planes

Pinhole intensity distributions
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S

On the basis of the reduced non-linear growth,
Mercury was configured with closely spaced slabs MercuryMercury

Diode Pump 
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MercuryMercury
The Mercury Laser is currently running with all 8 diode arrays  

80 kW arrays (36 tiles)2.3 kW tiles (23 bars)

- During laser alignment a
diode tile contact failed

- Analysis indicated contact fatigue
occurred during installation

- New tooling is being developed

- Image monitoring analysis has been added
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There are 23 slabs in fabrication to fully populate the amplifiers 
and provide 9 spares

Fabrication steps
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After

CZ Station 1 (small) CZ Station 2 (small) CZ Station 3 (large)

Before upgradeBefore upgrade After

All three
LLNL crystal 

growth stations
are operating



Eight 6.5 cm diameter boules have been were grown at 

1st flat interface
attempts

Fast rotation rateSlow rotation rate

MercuryMercury



The impact of MRF finishing on 1ω laser damage
threshold of coated S-FAP crystals is being evaluated

MercuryMercury

Damage probability of SFAP

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100 110 120
Fluence (J/cm2) at 10 ns

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 o

f d
am

ag
e 

 .

Uncoated
Yb:S-FAP

Coated Yb:S-FAP

MRF
polish

polish Damage Data Growth 
Experiments

MRF
Initiation: 20 J/cm2

Additional sites: 20 J.cm2

Rapid degradation : 27.5J/cm2

Conventional Polish
Initiation: 20 J/cm2

Additional sites: 27 J.cm2

Rapid degradation: 30J/cm2





Amp # 1 Phase plate Pockels cell
for isolation

Diode light
pump delivery  



MercuryMercury
Both amplifiers have been deployed with helium gas cooling

7 amplifier
slabs

Helium

Pump

Pump
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Amp 1 Amp 2
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Shots (x103)

4 gain slabs 7 blanks
7 blanks 4 gain slabs

4 gain slabs 4 gain slabs
5 gain slabs 5 gain slabs (in progress)



Mercury 8 Slab Campaign Summary
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Output

Far Field
76% in 5X diffraction

limited beam
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Shots (x103)

200 400 600 800 1000 1200
0

5

10

15

20

25

30

35
  7 slab data
  Model

O
ut

pu
t E

ne
rg

y 
(J

)

 

Diode Pulsewidth (µs)
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We have completed our thermal modeling of the
frequency converter design

MercuryMercury

YCOB: 50J, 10Hz, 1.58 cm
sapphire 

converter
crystal

Water
cooled
copper
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We have begun building the frequency conversion modules 

50 J (1ω), 10 ns, 10 Hz

1.58 cm thick
∆T = 4 oC

8 -10 cm long YCOB boules

MercuryMercury

2ω

0.75 cm thick 
∆T = 2 oC

100 J (1ω), 3 ns, 10 Hz

150 GHz (1ω)

2ω



YCOB lifetime experiments are being performed to confirm long 
term operation is possible without degradation in efficiency

MercuryMercury

PPKTP YCOB

PPKTP exhibits photo-degradation:   
- color center formation

(Ti4+ reduced to Ti3+)
- reduced conversion efficiency 

YCOB exhibits
no degradation

after 6 hours



0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

C
on

ve
rs

io
n 

Ef
fic

ie
nc

y 
(%

)

1ω Irradiance (GW/cm2)

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
on

ve
rs

io
n 

Ef
fic

ie
nc

y 
(%

)

1ω Irradiance (GW/cm2)

DKDP
crystals

4x1.5 cm thick
∆T = 3-0.8 oC

50 J (1ω), 3 ns, 3 Hz

2x1.5 cm
∆T = 6-1.6 oC

100 J (1ω), 3 ns, 3 Hz

MercuryMercury

100 cm boules of KDP   

DKDP is being persued in parallel with YCOB 
and allows early commissioning of the cooling hardware 

150 GHz (1ω)

2ω 2ω

Sapphire



MercuryMercury
Outline

• Project Overview (We are leveraging off of other DPSSL efforts) 
- Mercury Laser performance goals 
- International 100 J class systems

• Laser architecture (Architecture incorporates robustness)
- Design 
- Performance

• System performance (System completed and several 1 hour runs accomplished)
- Diode arrays
- Crystalline gain media
- Gas cooled amplifiers 
- Laser operations

• Upcoming activities and other topics
- Frequency conversion (Assembly of hardware begun)
- Front End 
- IRE
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