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We have completed our study of the fused silica final optic (FO)
option for 0.35 µm light, based on a “thin” Fresnel lens

Goal is to define the “operating window” for thin SiO2 FO solution:
• Comparison of SiO2 with other robust optical materials
• Effect of neutrons and gammas on optical properties
• Thermal management of laser heating with radiative cooling
•Accommodation of focusing, beam deflection, and smoothing

Several additional issues may need to be addressed:
• Transient response to neutrons (LANL)
• X-ray ablation of the surface
• Ion sputtering of the surface
• Shrapnel from the target



We have directly compared the absorption at 0.35 µm produced by
1 Mrad of neutrons for SiO2, MgF2, CaF2 and Al2O3 (ACRR, Sandia)
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SiO2 0.03

Al2O3 0.45

MgF2 0.15

CaF2 0.45

• SiO2 yields least absorption at 0.35 µm for given neutron dose

0.35 µm = λlaser
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• Experimentally, 35 defects are created per 1 MeV
neutron collision
• Based on MDS, ~ 400 are predicted
• Difference due to “slow” (>psec) recombination

E’ Center

Neutron-induced defect formation has been studied by Molecular
Dynamics Simulations (MDS) and absorption spectroscopy
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Simple mechanism of defect creation and annealing is
supported by several observations

• Spectra of E’ and Non-Bridging
Oxygen Holes Centers (NBOHCs)
observed
•E’ centers and NBOHCs are formed
in nearly equal number
•Complete elimination of defects by
thermal annealing is possible
• Model is consistent with Molecular
Dynamics Simulations



We have observed “radiation-annealing” in an optical
material for the first time
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• “Low dose” (1 Mrad) results, on prior vugraph, indicate 35 defects are formed per 1 MeV
neutron collision

• “High dose” (105 Mrad) results, above,  suggest 0.007 defects / collision

•Hypothesis is that overlapping collisional cascades give rise to “radiation annealing”

• Molecular Dynamics Simulations (MDS), above, reveal defects saturate after 5 cascades

Multiple recoils in same location (MDS)

E’ Center

NBOHC



As test of our radiation-annealing theory, measured and
calculated collisional cascade volumes are compared

“Measured” volume of collisional cascade:

Nsat = Mn / Vcol 

Saturated defects,
1.8 x 1018 cm-3

Collisional cascade
volume, 1.9 x 10-17 cm335 defects created

per 1 MeV neutron

• Measured: Vcol = 200 nm3 per 1 keV recoil

• Theory:  200 nm3 “box” is compared with
distribution of defects from MDS
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Annealing of defects has been quantified at two temperatures

Fit to:  τanneal = τ0 exp (+ Tanneal / T)

• Tanneal = 21,000 oK and τ0 = 4 × 10-10 sec

Reduction in absorption from annealing at 380 oC
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Final optic must be < 0.5 mm thickness to avert excessive
losses or temperature rise

Cooling from one-side only (most conservative) has no effect on
focus (second order effect – Ωbend

2):

Ωbend = αexp fabs Flaser  νrep doptic / 2 κ = 0.5 mrad

Based on radiative
cooling with 0.5 mm
thickness:
• T = 300oC
• fabs = 5% absorption



Schematic of a 2 x 5
Fresnel lens cluster

32 cm

20 cm

Line-of-sight clearance distance = 20 m f = 20 m

Focus

0.35 µµµµm beams

   λλλλ
n –1 = 0.73 µm (etch depth)

   8.8 µm (zone width)

Expanded view
of the
outermost
zones

Final optic design is off-axis Fresnel lens
for focusing and deflection



Combination of Fresnel lens and phase plate to yield spot
size of ~3 mm for direct drive target

• Calculation includes effects of 1 THz bandwidth
• Calculated transmission efficiency is 99 % for linear grooves



Description of neutron-induced defects for SiO2 under IFE conditions

Temperature of optic, TSiO2 = 300 oC:
• Qheat = αabs dSiO2 Flaser νrep + Fview σ [Tcham

4 – TSiO2
4]

• Qcool = ε σ [TSiO2
4 – Tsurr

4] 

Annealing time, τanneal = 916 hrs:
• τanneal = τ0 dSiO2 exp[Tanneal / TSiO2]

Defect Concentration, Ndefect =1.8 x 1018 cm-3:
• dNE’/ dt = Mn (σn NSiO2) φn [(Nsat – NE’) / Nsat] – NE’ / τanneal

Laser absorption, fabs(0.35µm) = 5%
• Thinner optic would be advantageous



Summary of IFE deployment issues for off-axis Fresnel lens 

Issue Amelioration
Absorption of 10%/mm
Scatter loss of 0.6 %/mm Thickness of <0.5 mm
Heating of optic
Fabrication 1 mm easy, 0.5 mm 

achievable,  0.25 mm possible
Density increase (saturates at 2.6 %) Pre-treat optics to radiation
Avoiding optical damage Laser fluence of ~1.5 J/cm2

Optical bandwidth (1 THz) Minor effect on focus
Misalignment / bending



Aluminum mirrors, dielectric mirrors, and transmissive
optics are all candidates for the IFE final optic

Aluminum mirror
• <10 nm evanescent

wave
• grazing incidence
• 3ω and 4ω

Dielectric mirror
• ~10 µm “optical depth”

• arbitrary reflection angle
• 3ω and 4ω

Transmissive optic
• ~ 0.5 mm path length
• few degree deflection
• 3ω only

Radiation hardness studies of dielectric mirrors are planned
• Common constituents are SiO2, ZrO2, HfO2, Ta2O5, MgF2

• HfO2, Ta2O5 are neutron absorbers, and become highly radioactive
• High damage threshold SiO2 - ZrO2 mirrors planned for irradiations

• predict 0.2 rem / hr after 100 Mrad dose on HFER at ORNL


